题意:结点无限个的满二叉树,从左到右按顺序编号a[u](能量).在结点u可以选择吸收/释放能量a[u].
n<=1e9,n<=2^k<=2^60. 输出从结点1开始经过k个结点后 总能量为n时的一个可行解.
n<=2^k. 如果只有选和不选,可以很简单的用k位二进制来表示n.现在不选的bit要变为负.
构造:令all=2^k-1,dif=all-n dif本来是不选的bit位,则只要令不选为dif/2的,因为其变为负数.
n<=1e9,n<=2^k<=2^60. 输出从结点1开始经过k个结点后 总能量为n时的一个可行解.
n<=2^k. 如果只有选和不选,可以很简单的用k位二进制来表示n.现在不选的bit要变为负.
构造:令all=2^k-1,dif=all-n dif本来是不选的bit位,则只要令不选为dif/2的,因为其变为负数.
最终结果为(all-dif/2)-dif/2=n 可以构造 (当dif为奇数 最后一步走右儿子,让all=2^k即可)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+20;
ll n,k;
ll res[N],pw2[N],sign[N];
int main()
{
pw2[1]=1;
for(int i=2;i<=61;i++)
pw2[i]=pw2[i-1]*2ll;
int T,cas=0;
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld",&n,&k);
for(int i=1;i<=k;i++)
res[i]=pw2[i],sign[i]=1;
ll dif=pw2[k+1]-1-n;
if(n%2==0)
res[k]++,dif++;
dif/=2;
for(int i=0;(1<<i)<=dif;i++)
{
if((dif>>i)&1)
sign[i+1]=0;
}
printf("Case #%d:\n",++cas);
for(int i=1;i<=k;i++)
{
printf("%lld ",res[i]);
if(sign[i])
printf("+\n");
else
printf("-\n");
}
}
return 0;
}