GYM Amman 17 G. Super Subarray 暴力,最小公倍数.

题意:给出长度为n的序列a,若区间[L,R]之和为sum 并且 sum为a[L],a[L+1]..a[R]的倍数 则区间[L,R]合法.
n<=2e3,a[i]<=1e9. 问有多少个合法区间?


枚举区间后暴力判断 O(n^3) TLE...
枚举左端点 右端点无单调性 {1,2,3}.


枚举区间[L,R] 如果能快速知道[a[L]..a[R]]的最小公倍数x(枚举区间的时候维护一下lcm) 在判断sum是否为x的倍数即可.

LCM可能溢出,n个数的和最大为2e12 lcm超过该数则退出.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e3+5,mod=1e9+7;
const ll inf=2e12;
ll a[N];
ll gcd(ll a,ll b)
{
    return b==0?a:gcd(b,a%b);
}
ll lcm(ll a,ll b)
{
    return a*b/gcd(a,b);
}
int main()
{
    int T,n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%I64d",&a[i]);
        ll ans=0;
        for(int i=1;i<=n;i++)
        {
            ans++;
            ll sum=a[i],fac=a[i];
            for(int j=i+1;j<=n;j++)
            {
                sum+=a[j];
                ll tmp=fac/gcd(fac,a[j]);
                if(a[j]>inf/tmp)
                    break;
                else
                    fac=tmp*a[j];
                if(sum%fac==0)
                    ans++;
                if(fac>inf)
                    break;
            }
        }
        printf("%I64d\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值