题意:给出长度为n的序列a,若区间[L,R]之和为sum 并且 sum为a[L],a[L+1]..a[R]的倍数 则区间[L,R]合法.
n<=2e3,a[i]<=1e9. 问有多少个合法区间?
枚举区间后暴力判断 O(n^3) TLE...
枚举左端点 右端点无单调性 {1,2,3}.
枚举区间[L,R] 如果能快速知道[a[L]..a[R]]的最小公倍数x(枚举区间的时候维护一下lcm) 在判断sum是否为x的倍数即可.
n<=2e3,a[i]<=1e9. 问有多少个合法区间?
枚举区间后暴力判断 O(n^3) TLE...
枚举左端点 右端点无单调性 {1,2,3}.
枚举区间[L,R] 如果能快速知道[a[L]..a[R]]的最小公倍数x(枚举区间的时候维护一下lcm) 在判断sum是否为x的倍数即可.
LCM可能溢出,n个数的和最大为2e12 lcm超过该数则退出.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e3+5,mod=1e9+7;
const ll inf=2e12;
ll a[N];
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll lcm(ll a,ll b)
{
return a*b/gcd(a,b);
}
int main()
{
int T,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%I64d",&a[i]);
ll ans=0;
for(int i=1;i<=n;i++)
{
ans++;
ll sum=a[i],fac=a[i];
for(int j=i+1;j<=n;j++)
{
sum+=a[j];
ll tmp=fac/gcd(fac,a[j]);
if(a[j]>inf/tmp)
break;
else
fac=tmp*a[j];
if(sum%fac==0)
ans++;
if(fac>inf)
break;
}
}
printf("%I64d\n",ans);
}
return 0;
}