Codeforces Gym 101498G. Super Subarray

本文解析了一个CodeForces上的题目,该题要求找出所有子区间,使得区间内元素之和可以被区间内的任意元素整除。文章详细介绍了如何通过计算最小公倍数来解决这一问题,并给出了一段C++代码实现。

题目:
http://codeforces.com/gym/101498/problem/G

题意:
给n个数,求有多少对[l,r]使得∑data[i] (i∈[l,r]) 能被任一data[j]整除 (j∈[l,r])

分析:
设一堆数的和为sum,这堆数的最小公倍数为lcm;
若这堆数的和,能被任一数整除,则sum%lcm==0;
(理解:最小的能被任一数整除的数就是lcm,则这堆数的和一定要为lcm的倍数才行)

一堆数的lcm怎么求呢?
假设已知前n-1个数的lcm为t;
那么这n个数的lcm就是:t*data[n]/gcd(t,data[n]);

So,O(n^2*logn)循环就行。

代码:

#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
const int tmax=2005;
int n,ans;
ll data[tmax],sum[tmax],lcm;
ll gcd(ll a,ll b)
{
    if(b==0) return a;
    return gcd(b,a%b);
}
int main()
{
    int T,i,j;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        ans=n;
        for(i=1;i<=n;i++)
        {
            scanf("%I64d",&data[i]);
            sum[i]=sum[i-1]+data[i];
        }
        for(i=1;i<=n;i++)        //左端点
        {
            lcm=data[i];
            for(j=i+1;j<=n;j++)    //右端点
            {
                lcm=lcm*data[j]/gcd(lcm,data[j]);
                if((sum[j]-sum[i-1])%lcm==0) ans++;
                if(lcm>(sum[n]-sum[i-1])) break;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}
### Codeforces Round 927 Div. 3 比赛详情 Codeforces是一个面向全球程序员的比赛平台,定期举办不同级别的编程竞赛。Div. 3系列比赛专为评级较低的选手设计,旨在提供更简单的问题让新手能够参与并提升技能[^1]。 #### 参赛规则概述 这类赛事通常允许单人参加,在规定时间内解决尽可能多的问题来获得分数。评分机制基于解决问题的速度以及提交答案的成功率。比赛中可能会有预测试案例用于即时反馈,而最终得分取决于系统测试的结果。此外,还存在反作弊措施以确保公平竞争环境。 ### 题目解析:Moving Platforms (G) 在这道题中,给定一系列移动平台的位置和速度向量,询问某时刻这些平台是否会形成一条连续路径使得可以从最左端到达最右端。此问题涉及到几何学中的线段交集判断和平面直角坐标系内的相对运动分析。 为了处理这个问题,可以采用如下方法: - **输入数据结构化**:读取所有平台的数据,并将其存储在一个合适的数据结构里以便后续操作。 - **时间轴离散化**:考虑到浮点数精度误差可能导致计算错误,应该把整个过程划分成若干个小的时间间隔来进行模拟仿真。 - **碰撞检测算法实现**:编写函数用来判定任意两个矩形之间是否存在重叠区域;当发现新的连接关系时更新可达性矩阵。 - **连通分量查找技术应用**:利用图论知识快速求解当前状态下哪些节点属于同一个集合内——即能否通过其他成员间接相连。 最后输出结果前记得考虑边界条件! ```cpp // 假设已经定义好了必要的类和辅助功能... bool canReachEnd(vector<Platform>& platforms, double endTime){ // 初始化工作... for(double currentTime = startTime; currentTime <= endTime ;currentTime += deltaT){ updatePositions(platforms, currentTime); buildAdjacencyMatrix(platforms); if(isConnected(startNode,endNode)){ return true; } } return false; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值