题意:定义f(x)为x的数位之和.例如f(427)=13.
2<=k<=1e5. 给出k,问f(y)最小为多少,y为k的倍数?
y为k的倍数,也就是y%k==0 余k为0肯定从某个余k为r的更新而来
若x≡y(modk) 显然只要保留f(x),f(y)中f值较小的哪一个.
从一位数开始搜索,每次可以在该数后面*10+i.
只有f(r)比原先优的才会被压入队列. 也就是Dijkstra求最短路的relax过程.优先队列维护.
2<=k<=1e5. 给出k,问f(y)最小为多少,y为k的倍数?
y为k的倍数,也就是y%k==0 余k为0肯定从某个余k为r的更新而来
若x≡y(modk) 显然只要保留f(x),f(y)中f值较小的哪一个.
从一位数开始搜索,每次可以在该数后面*10+i.
只有f(r)比原先优的才会被压入队列. 也就是Dijkstra求最短路的relax过程.优先队列维护.
余数k<=1e5.最多1e5个点 每个点10条边. 复杂度O(nlogn) ojbk
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> ii;
const int N=2e5+5;
priority_queue<ii> q;
int k,d[N];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>k;
memset(d,0x3f3f3f3f,sizeof(d));
for(int i=1;i<=9;i++)
{
q.push(ii(-i,i%k));
d[i]=i;
}
while(!q.empty())
{
ii u=q.top();
q.pop();
ll val=-u.first,r=u.second;
if(val>d[r]) continue;
for(int i=0;i<10;i++)
{
int nr=(r*10+i)%k,nv=val+i;
if(d[nr]>nv)
{
d[nr]=nv;
q.push(ii(-nv,nr));
}
}
}
cout<<d[0]<<'\n';
return 0;
}
mark:标程用的是01-bfs(deque维护.)