NCPC 14 A Amanda Louges 建图,二分图染色

题意:n个白点.有m个条件(u,v,x).
(u,v,x) x=0表示u,v两点都不能变为黑色.
(u,v,x) x=1表示u,v两点正好有一点要涂成为黑色.
(u,v,x) x=2表示u,v两点都要涂成黑色.
n,m<=2e5. 问最少要把多少个点涂成黑色才能满足m个条件.无解输出-1.


建图:先把所有(u,v,x=1)的 (u,v)连接一条边.
(u,v,x=2)的点mk标记为true ,(u,v,x==0)的点ban标记为true.
把mk[u]==1的点染成黑色,因为u-v正好只能有一个点为黑,那么它相邻的点v只能染成白色.
ban[u]==1的点只能为白色.因为u-v要有一个点为黑色.所以它相邻的点v要染成白色.

 

做好二分图染色后,已经满足了其中两类条件

剩下联通分量中的点显然ban[i],mk[i]都没有被标记.可以任意染色.
因为确定一个点颜色后整个联通分量的黑点也就确定 取其中最小值即可.

 

#include <bits/stdc++.h>
using namespace std;
const int N=2e5+5;
int n,m,col[N];
int cnt_a,cnt_b,res=0;
bool mk[N],ban[N],flag;
vector<int> e[N];
void dfs(int u,int c,int op){
	if(col[u]!=-1){
		if(col[u]!=c)	flag=false;
		return;
	}
	col[u]=c;
	if(col[u]==1){
		cnt_a++;
		if(op==0) res++;
		if(ban[u])	flag=false;
	}
	else{
		cnt_b++;
		if(mk[u])	flag=false;
	}

	for(int i=0;i<e[u].size();i++){
		int v=e[u][i];
		dfs(v,1-c,op);
	}
}
int main(){
	cin>>n>>m;
	int u,v,x;
	while(m--){
		cin>>u>>v>>x;
		if(x==0)	ban[u]=ban[v]=true;
		else if(x==2)	mk[u]=mk[v]=true;
		else{
			e[u].push_back(v);
			e[v].push_back(u);
		}
	}
	flag=true;
	memset(col,-1,sizeof(col));
	for(int i=1;i<=n;i++)
	{
		if(mk[i]&&col[i]==-1)	dfs(i,1,0);
		if(ban[i]&&col[i]==-1)	dfs(i,0,0);	
	}
	for(int i=1;i<=n;i++){
		if(col[i]!=-1)	continue;
		cnt_a=cnt_b=0;
		dfs(i,1,1);
		res+=min(cnt_a,cnt_b);
	}
	if(flag==false)	cout<<"impossible"<<'\n';
	else	cout<<res<<'\n';
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值