pytorch Sequential ModuleList与python list构建网络比较

参考别人博客,自己实验并总结,供参考。

import torch
import torch.nn as nn

"""
比较了nn.Sequential,ModuleList与python list
构建网络的区别
"""


class net1(nn.Module):
    def __init__(self):
        super(net2, self).__init__()
        self.conv = nn.Sequential(nn.Conv2d(3, 5, 5, 0))
        # 注意,直接用list的构建方式,层与参数均不会出现在网络中
        self.linears = [nn.Linear(10, 10) for i in range(2)]

    def forward(self, x):
        x = self.conv(x)
        for m in self.linears:
            x = m(x)
        return x


class net2(nn.Module):
    def __init__(self):
        super(net2, self).__init__()
        self.conv = nn.Sequential(nn.Conv2d(3, 5, 5, 0))
        # 单独的层去构建则会被自动加入网络结构
        self.linear1 = nn.Linear(10, 10)
        self.linear2 = nn.Linear(10, 10)

    def forward(self, x):
        x = self.conv(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


class net3(nn.Module):
    def __init__(self):
        super(net1, self).__init__()
        # 用ModuleList构建的层则会自动注册在网络结构中
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(2)])

    def forward(self, x):
        """
        1.
        nn.ModuleList 并没有定义一个网络,
        它只是将不同的模块储存在一起,这些模块之间并没有什么先后顺序可言
        x = self.linears[2](x)
        x = self.linears[0](x)
        x = self.linears[1](x)
        2.
        一个模块(层)可以被调用多次,但是被调用多次的模块,
        使用的是同一组parameters,即他们是参数共享的,
        """
        for m in self.linears:
            x = m(x)
        return x


class net4(nn.Module):
    def __init__(self):
        super(net4, self).__init__()
        self.block = nn.Sequential(nn.Conv2d(1, 20, 5),
                                   nn.ReLU(),
                                   nn.Conv2d(20, 64, 5),
                                   nn.ReLU())

    """
    注意,nn.Sequential与nn.ModuleList的区别主要有两个
    1.
    nn.Sequential内的模块是按照顺序排列的
    2.
    nn.Sequential已经实现了内部的forward函数,因此可以整个block直接调用
    """

    def forward(self, x):
        x = self.block(x)
        return x


class net5(nn.Module):
    def __init__(self):
        super(net5, self).__init__()
        self.net1 = net2()
        self.net2 = net4()


if __name__ == '__main__':
    net = net5()
    print(net)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值