从概率的角度看logistic regression

logistic regression假设样本 x x x为正的概率是: P ( Y = 1 ∣ x ) = 1 1 + e − ( w ⋅ x + b ) P(Y=1|x)=\frac{1}{1+e^{-(w\cdot x+b)}} P(Y=1x)=1+e(wx+b)1
我们在看这个公式的时候,可以理解成

  • x x x是一个事件,一共有1,2,…,N个事件
  • Y Y Y是类别,有0和1,这两种类别

那么 P ( Y = 1 ∣ x ) P(Y=1|x) P(Y=1x)我理解就是一个后验概率,后验概率的意思是

后验概率:事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小

所以 P ( Y = 1 ∣ x ) P(Y=1|x) P(Y=1x)就是事件 x x x已经发生了, x x x属于这个 Y = 1 Y=1 Y=1这个类别的概率是多少。

现在就假设 P ( Y = 1 ∣ x ) = 1 1 + e − ( w ⋅ x + b ) P(Y=1|x)=\frac{1}{1+e^{-(w\cdot x+b)}} P(Y=1x)=1+e(wx+b)1,同理 P ( Y = 0 ∣ x ) = 1 − 1 1 + e − ( w ⋅ x + b ) P(Y=0|x)=1-\frac{1}{1+e^{-(w\cdot x+b)}} P(Y=0x)=11+e(wx+b)1也可以是这么理解。

OK,我们假设是这个概率,那么假设中的参数 w , b w,b wb怎么求呢?答案是:

极大似然函数估计法

为什么用这个方法求 w , b w,b wb?因为

极大似然函数估计法就是用来求模型已知,参数未知的情况下,通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大。

在logistic regression里,模型已知了啊,是 P ( Y = 1 ∣ x ) = 1 1 + e − ( w ⋅ x + b ) P(Y=1|x)=\frac{1}{1+e^{-(w\cdot x+b)}} P(Y=1x)=1+e(wx+b)1,和 P ( Y = 0 ∣ x ) = 1 − 1 1 + e − ( w ⋅ x + b ) P(Y=0|x)=1-\frac{1}{1+e^{-(w\cdot x+b)}} P(Y=0x)=11+e(wx+b)1,参数 w , b w,b wb未知,用试验结果,就是训练数据 x i , y i x_{i},y_{i} xi,yi i = 1 , 2 , . . . , N i=1,2,...,N i=1,2,...,N去估计参数啊。

所以用极大化似然函数的方法,可以列出似然函数 L ( w ∣ x ) = P ( x ∣ w ) = ∏ i = 1 N p ( x i ∣ w ) = ∏ i = 1 N P ( Y = 1 ∣ x ) y i P ( Y = 0 ∣ x ) 1 − y i L(w|x)=P(x|w)=\prod_{i=1}^{N}p(x_{i}|w)=\prod_{i=1}^{N}P(Y=1|x)^{y_{i}}P(Y=0|x)^{1-y_{i}} L(wx)=P(xw)=i=1Np(xiw)=i=1NP(Y=1x)yiP(Y=0x)1yi

这里解释一下这个似然函数 L ( w ∣ x ) L(w|x) L(wx),意思是事件 x x x已经发生了, w w w的值等于某个值时使得事件 x x x发生的可能性等于多少。那么 p ( x ∣ w ) p(x|w) p(xw)的意思是,在给定w的值等于多少,事件 x x x发生的概率是想到的。所以就可以列出上面的似然函数。

我们要求 x x x发生的可能性最大啊,那么就是极大化似然函数,求出来的 w w w就是我们想要的参数了。由于该极大似然函数无法直接求解,我们一般通过对该函数进行梯度下降来不断逼急最优解。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值