logistic regression的概率思想

本篇将对LR(logistic regression)进行讲解,主要从以下几个方面展开:

  1. LR的两种等价表示形式
  2. LR与线性回归
  3. LR与最大似然
  4. LR与最大后验
  5. LR参数求解

LR的两种等价表示形式

LR是一个线性二分类的概率模型,表示为f(X) = W^T X + b; \; predictionClass = C1 \;if\; f(X) > 0 \; else \; C2

简化表示,记\theta = (b, W)

当用0/1表示C1和C2时,其对应的概率表示为:\left\{ \begin{matrix} p(y_i=1|X_i,\theta) &=& \sigma(f(X_i)) &=& \frac{1}{1+e^{-f(X_i)}} \\ p(y_i=0|X_i, \theta) &=& 1-p(y_i=1|X_i,\theta) &=& \frac{1}{1+e^{f(X_i)}} \end{matrix}\right.

当用-1/1表示C1和C2时,其对应的概率表示为:p(y_i|X_i,\theta) = \sigma(y_i X_i) = \frac{1}{1+e^{-y_i f(X_i)}}

显然上述两种概率表示是相等的,只不过对y的表示不同而已。

LR与线性回归

由前面可知,W^T X + b = f(X) =ln(\frac{p(y=1)}{1-p(y=1)}),等式右边也就是对数几率;所以LR也可以看做线性回归,只不过其回归的目标是对数几率。

LR与最大似然

似然估计是一种假设未知参数为常量的参数估计方法,其目标是估计出未知参数使得观测样本出现的概率最大,通常为了求解方便进行了取对数,

Likelihood= \prod_i{p(y_i|X_i,W,b)} \\ \rightarrow LL = \sum_{i}{ln(p(y_i|X_i,W,b))} = -\sum_{i}{ln(1+exp^{-y_if(X_i)})}

求最大似然,即求最小损失L

L(\theta) = \sum_{i}{ln(1+exp^{-y_if(X_i)})}

损失L分别对W、b求导:

\partial L(\theta) / \partial W= \sum_{i}(p(y_i|X_i)-1)y_iX_i\partial L(\theta) / \partial b= \sum_{i}(p(y_i|X_i)-1)y_i

LR与最大后验

后验估计是一种假设未知参数为随机变量的参数估计方法,其目标是使得观测样本下出现特定参数的概率最大,同样为了求解方便进行取对数,

Posterior= {p(\theta|X,y)}=p(y|X,\theta)p(\theta)/p(y|X) \\ \rightarrow LogPost = \sum_{i}{ln(p(y_i|X_i,\theta))}+ln(p(\theta))-ln(p(y|X))\\ = -\sum_{i}{ln(1+exp^{-y_if(X_i)})}+ln(p(\theta))-constant

最大后验概率,即最小损失L

L(\theta) = \sum_{i}{ln(1+exp^{-y_if(X_i)})} - ln(p(\theta))

当参数的先验概率服从拉普拉斯分布p(\theta|\mu=0,b) = \frac{1}{2b}exp^{\frac{-|\theta-\mu|}{b}}时,

L(\theta) = \sum_{i}{ln(1+exp^{-y_if(X_i)})} + C||\theta||_1,即似然损失+L1正则

通常对b不做正则约束,损失L分别对W、b求导:

\partial L(\theta) / \partial W= \sum_{i}(p(y_i|X_i)-1)y_iX_i + C \frac{\partial||\theta||_1}{\partial W}\partial L(\theta) / \partial b= \sum_{i}(p(y_i|X_i)-1)y_iX_i

当参数的先验概率服从高斯分布p(\theta|\mu=0,\Sigma=diagonal) = \frac{1}{\sqrt{(2\pi)^D|\Sigma|}}exp^{​{-\frac{1}{2}(\theta-\mu)^T}\Sigma ^{-1}{(\theta-\mu)}}时,L(\theta) = \sum_{i}{ln(1+exp^{-y_if(X_i)})} + C||\theta||_2^2,即似然损失+L2正则

通常对b不做正则约束,损失L分别对W、b求导:

\partial L(\theta) / \partial W= \sum_{i}(p(y_i|X_i)-1)y_iX_i + C \frac{\partial||\theta||_2^2}{\partial W}\partial L(\theta) / \partial b= \sum_{i}(p(y_i|X_i)-1)y_iX_i

参数求解

根据上面得出的损失对参数的梯度,使用梯度下降法迭代求解即可。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值