机器学习
文章平均质量分 50
gyl2016
这个作者很懒,什么都没留下…
展开
-
TypeError: only integer tensors of a single element can be converted to an index
深度学习中遇到的bug原创 2022-09-15 17:26:02 · 5938 阅读 · 1 评论 -
Large-batch-size与模型泛化性的问题
paper—《Bag of Tricks for Image Classification with Convolutional Neural Networks》中提到“Using large batch size, however, may slow down the training progress. For convex problems, convergence rate decreases as batch size increases. Similar empirical results原创 2022-01-03 17:52:35 · 1110 阅读 · 0 评论 -
tornado框架简单部署lightgbm模型服务
本文讲一下利用tornado框架简单部署lightgbm模型服务的demo,具体步骤如下:首先,准备好线下训练好的lightgbm模型文件,本文使用iris数据集训练得到。然后,部署代码deploy.py如下:import tornado.ioloopimport tornado.webimport jsonimport joblibimport numpy as npclass MainHandler(tornado.web.RequestHandler): def g原创 2021-04-27 18:10:51 · 599 阅读 · 4 评论 -
lightgbm模型处理类别型特征
类别型特征编码由于是字符串类型,所以一般需要经过编码处理转换成数值型。本文主要想说的是直接将字符串值传到lightgbm中训练。注意:xgboost模型也需要提前one-hot编码转换才能入模。下面是代码: a = [i for i in range(1000)] b = ["tag","bga","efd","rfh","esg","tyh"] c = [b[randint(0,5)] for i in range(1000)] d = [randint(0,1)原创 2021-01-16 20:39:32 · 8875 阅读 · 8 评论 -
pyspark使用分布式xgboost
亲测跑通环境: Python 3.6.5 Pyspark:2.4.5 Spark: 2.4.3步骤: 第一步:配置好环境 第二步:下载相关文件(下载地址) xgboost4j-0.72.jar xgboost4j-spark-0.72.jar Sparkxgb.zip 第三步:关键点1:将xgboost4j-0.72.jar和Xgboost4j-spark-0.72.jar添加到job中(使用--ja...原创 2020-12-18 18:16:53 · 2525 阅读 · 19 评论 -
sklearn.cross_val_score和sklearn.roc_auc_score
1、sklearn.model_selection.cross_val_score(estimator,X,y=None,groups=None,scoring=None,cv=None,n_jobs=None,verbose=0,fit_params=None,pre_dispatch='2*n_jobs',error_score=nan)(1)cv参数定义交叉验证方式:...原创 2020-03-27 23:21:48 · 1589 阅读 · 0 评论 -
boosting算法调参
算法调参参考:XGBoosthttps://blog.csdn.net/han_xiaoyang/article/details/52665396GBMhttps://blog.csdn.net/han_xiaoyang/article/details/526631700、网格搜索sklearn.model_selection.GridSearchCV...原创 2019-03-03 13:17:10 · 1487 阅读 · 0 评论 -
sklearn中一些参数
转载:http://www.cnblogs.com/chenyaling/p/7826229.html 1。监督学习1.1。广义线性模型1.1.1。普通最小二乘法 class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)1.1.1.1...转载 2018-12-09 21:19:40 · 4419 阅读 · 0 评论 -
深度学习中激活函数的优缺点
在深度学习中,信号从一个神经元传入到下一层神经元之前是通过线性叠加来计算的,而进入下一层神经元需要经过非线性的激活函数,继续往下传递,如此循环下去。由于这些非线性函数的反复叠加,才使得神经网络有足够的capacity来抓取复杂的特征。为什么要使用非线性激活函数?答:如果不使用激活函数,这种情况下每一层输出都是上一层输入的线性函数。无论神经网络有多少层,输出都是输入的线性函数,这样就和只有一原创 2017-12-08 13:41:12 · 34025 阅读 · 4 评论 -
机器学习基本功
1、回归模型:重点关注xgboost 注:Introduction to Statistical Learning的2-7章2、分类模型:《统计学习方法》3、神经网络:(a)普通的ANN (b)处理图像的CNN (c)处理文字和语音的RNN(LSTM)注:可以参考《深度学习》的6-10章和吴恩达的DeepLearnin原创 2017-09-10 16:36:05 · 417 阅读 · 0 评论 -
逻辑回归与其他模型的关系
【机器学习算法系列之二】浅析Logistic Regression 发表于 2016-01-09 | 分类于 project experience | | 12573本文是受rickjin老师的启发,谈谈关于logistic regression的一些内容,虽然已经有珠玉在前,但还是做一下自己的总结。在查找资料的过程中,越看越觉得lr实在是博大精深,囊括的内容太多太多了,本文转载 2017-08-20 11:11:42 · 1603 阅读 · 0 评论