tensorflow
gyl2016
这个作者很懒,什么都没留下…
展开
-
Tensorflow 获取model中的变量列表
1、动态获取 + 朴素获取法 + 朴素获取可训练变量:t_vars = tf.trainable_variables() + 朴素获取全部变量,包含声明training=False变量:all_vars = tf.global_variables() + 使用tensorflow.contrib.slim + 获取常规变量(是slim里面与model变量对应的一个类型):regular_variables = slim.get_variable...原创 2021-07-02 20:57:05 · 791 阅读 · 0 评论 -
keras获取中间层结果的两种方式
keras获取中间层有两种方式:(1)通过tf.keras.backend.function函数获取;(2)通过tf.keras.models.Model函数获取;对于第一种方式,主要是利用tensor name获取,具体可见https://blog.csdn.net/NOT_GUY/article/details/108290883;对于第二种方式,使用步骤如下:1)第一步,构建好模型;2)第二步,利用keras的summary函数打印模型结构图;3)第三步,训练模型;4)原创 2021-05-12 20:02:01 · 1834 阅读 · 0 评论 -
利用tf.tile和tf.reshape和tf.transpose达到np.repeat效果
问题:将二维矩阵A复制后变换为三维矩阵B,示例如下: ----------------------> 如果是numpy库,则可以直接使用np.repeat和np.reshape实现由于tensorflow-1.12中没有tf.repeat函数,所以只能通过其他方式实现,即:tf.tile+tf.reshape+tf.transposetf.tile中参数multiples为[1,5],即第一维重复1份,第二维重复5份...原创 2021-02-07 15:31:25 · 1371 阅读 · 1 评论 -
基于tensorflow-hub使用预训练bert模型——简单易上手成功率百分百
最近,研究了下如何使用基于tensorflow-hub中预训练bert,一开始找到的关于预模型使用介绍的官方教程国内打不开,所以看了很多博客遇到了很多坑,直至最后找到能打开的教程,才发现使用很简单。实验版本: tensorflow版本: 2.3.0 tensorflow-hub版本:0.9.0 python版本: 3.7.6数据准备: 首先,熟悉bert的都知道输入有3个:input_ids、input_mask、seg...原创 2020-10-02 00:11:51 · 3860 阅读 · 1 评论 -
Non-OK-status: tensorflow::Env::Default()->DeleteFile(ptx_path) status: Not found
最近在跑程序时,出现过好几次这个问题,当时在官方tensorflow的github上查到了这个问题,见:https://github.com/tensorflow/tensorflow/issues/39712,工作人员回复让试一下tf-nightly(应该是最新迭代的版本),但由于tensorflow版本多人再用,所以也没试这种方法。今天又碰到这个问题,研究了一下,下面首先给出我这里几次碰到这个问题的背景:(1)由于有多人在使用GPU,所以前几次都是在GPU占用比较大的情况下,然后我跑个程序就出现原创 2020-09-28 00:25:48 · 734 阅读 · 1 评论 -
tensorflow.keras中多输入多输出遇到的几个问题
这里,主要是想构建3个输出,然后计算3个输出的损失函数,并按权重将损失函数加起来作为总的损失模型构建部分class MyModel_add3loss(tf.keras.Model): def __init__(self): super(MyModel_add3loss,self).__init__() self.inputa = tf.keras.layers.InputLayer(input_shape=(60, 8, 1)) self.原创 2020-09-23 17:02:20 · 6625 阅读 · 8 评论 -
ValueError: Output tensors to a Model must be the output of a TensorFlow `Layer`
最近在看tensorflow.keras的多输入多输出时,碰到了这个问题,在这里记录一下。首先给出报错代码:# 两个输入main_input = tf.keras.layers.Input(shape=(784,),dtype=tf.float32,name="main_input")auxiliary_input = tf.keras.layers.Input(shape=784,),dtype=tf.float32,name="auxiliary_input")## 网络1x = t原创 2020-09-15 17:31:55 · 3391 阅读 · 1 评论 -
tensorflow中使用预训练模型进行微调
预训练模型进行微调定义模型class MyModel(tf.keras.Model): def __init__(self, height=None,width=None,channel=None): super(MyModel,self).__init__() self.inputshape = tf.keras.layers.InputLayer(input_shape=(height,width,channel)) # self.原创 2020-08-29 16:20:48 · 1347 阅读 · 0 评论 -
tensorflow获取模型中间层结果及错误tf.keras.backend.function Layer ‘ + self.name + ‘ has no inbound nodes.
错误使用1、构建模型:import tensorflow as tfimport collectionsfrom efficientnet import tfkerasclass MyModel(tf.keras.Model): def __init__(self, height=None,width=None,channel=None): super(MyModel,self).__init__() self.inputshape = tf.原创 2020-08-29 10:55:13 · 4962 阅读 · 11 评论 -
ValueError: Shape must be rank 0 but is rank 1 for ‘Adam/update_weight/ApplyAdam‘ (op: ‘ApplyAdam‘)
原代码:self.lr = tf.placeholder(shape=[1],dtype=tf.float32,name="learning_rate")。。。。。。 optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)self.trainops = optimizer.minimize(self.cost)原创 2020-07-03 15:42:13 · 1402 阅读 · 0 评论 -
GPU在bash和python代码中的写法
1、bash中## bash设定GPU卡顺序:export CUDA_DEVICE_ORDER = "PCI_BUS_ID"指定第1块和第2块GPU卡:export CUDA_VISIBLE_DEVICES="0,1"2、python代码中## pythonimport osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"...原创 2020-03-01 14:29:10 · 2960 阅读 · 0 评论 -
tensorboard可视化学习中出现的一些问题
TensorBoard通过读取TensorFlow的事件文件来运行,该文件中包含了主要数据。注意:以下是基于TensorFlow API r1.4运行的tf.summary模块:(1)tf.summary.histogram用来记录计算流图中一些tensor的数据分布,这些数据有个特点:服从某种分布,比如:权重变量和梯度输出。(2)tf.summary.scalar用来记录原创 2018-06-14 21:14:37 · 1283 阅读 · 0 评论