强化学习 6 ——价值函数逼近 (VFA)

上篇文章强化学习——时序差分 (TD) 控制算法 Sarsa 和 Q-Learning主要介绍了 Sarsa 和 Q-Learning 两种时序差分控制算法,在这两种算法内部都要维护一张 Q 表格,对于小型的强化学习问题是非常灵活高效的。但是在状态和可选动作非常多的问题中,这张Q表格就变得异常巨大,甚至超出内存,而且查找效率极其低下,从而限制了时序差分的应用场景。近些年来,随着神经网络的兴起,基于深度学习的强化学习称为了主流,也就是深度强化学习(DRL)。

一、函数逼近介绍

限制 Sarsa 和 Q-Learning 的应用场景原因是需要维护一张巨大的 Q 表格,那么能不能用其他的方式来代替 Q表格呢?很自然的,就想到了函数。
v ^ ( s , w ) ≈ v π ( s ) q ^ ( s , a , w ) ≈ q π ( s , a ) π ^ a , s , w ≈ π ( a ∣ s ) \hat{v}(s, w) \approx v_\pi(s) \\ \hat{q}(s,a, w) \approx q_\pi(s, a) \\ \hat{\pi}{a,s,w} \approx \pi(a|s) v^(s,w)vπ(s)q^(s,a,w)qπ(s,a)π^a,s,wπ(as)
也就是说可以用一个函数来代替 Q 表格,不断更新 q ( s , a ) q(s,a) q(s,a) 的过程就可以转化为用参数来拟合逼近真实 q 值的过程。这样学习的过程不是更新 Q 表格,而是更新 参数 w 的过程。
在这里插入图片描述

下面是几种不同的拟合方式:

第一种函数接受当前的 状态 S 作为输入,输出拟合后的价值函数

第二种函数同时接受 状态 S 和 动作 a 作为输入,输出拟合后的动作价值函数

第三种函数接受状态 S,输出每个动作对应的动作价值函数 q

常见逼近函数有线性特征组合方式、神经网络、决策树、最近邻等,在这里只讨论可微分的拟合函数:线性特征组合和神经网络两种方式。

1、知道真实 V 的函数逼近

对于给定的一个状态 S 假定知道真实的 v π ( s ) v_\pi(s) vπ(s) ,然后经过拟合得到 v ^ ( s , w ) \hat{v}(s, w) v^(s,w) ,于是就可以使用均方差来计算损失
J ( w ) = E π [ ( v π ( s ) − v ^ ( s , w ) ) 2 ] J(w) = E_\pi[(v_\pi(s) - \hat{v}(s, w))^2] J(w)=Eπ[(vπ(s)v^(s,w))2]
利用梯度下降去找到局部最小值:
Δ w = − 1 2 α ∇ w v ^ ( s , w ) w t + 1 = w t + Δ w \Delta w = -\frac{1}{2}\alpha \nabla_w\hat{v}(s,w) \\ w_{t+1} = w_t + \Delta w Δw=21αwv^(s,w)wt+1=wt+Δw
可以提取一些特征向量来表示当前的 状态 S,比如对于 gym 的 CartPole 环境,提取的特征有推车的位置、推车的速度、木杆的角度、木杆的角速度等

UHz2VS.png $$ x(s) = (x_1(s), x_2(s), \cdots,x_n(s))^T $$
此时价值函数 就可以用线性特征组合表示:

v ^ ( s , w ) = x ( s ) T w = ∑ j = 1 n x j ( s ) ⋅ w j \hat{v}(s,w) = x(s)^Tw=\sum_{j=1}^nx_j(s)\cdot w_j v^(s,w)=x(s)Tw=j=1nxj(s)wj

使用均方差计算损失函数:
J ( w ) = E π [ ( v π ( s ) − x ( s ) T w ) 2 ] J(w) = E_\pi[(v_\pi(s) - x(s)^T w)^2] J(w)=Eπ[(vπ(s)x(s)Tw)2]
因此更新规则为:
Δ w = α ( v π ( s ) − v ^ ( s , w ) ) ⋅ x ( s ) U p d a t e = S t e p S i z e    ∗    P r e d i c t i o n E r r o r    ∗    F e a t u r e V a l u e \Delta w = \alpha(v_\pi(s)-\hat{v}(s,w))\cdot x(s) \\ Update = StepSize\;*\;PredictionError\;*\;FeatureValue Δw=α(vπ(s)v^(s,w))x(s)Update=StepSizePredictionErrorFeatureValue

二、预测过程中的价值函数逼近

因为函数逼近的就是真实的状态价值,所以在实际的强化学习问题中是没有 v π ( s ) v_\pi(s) vπ(s) 的,只有奖励。所以在函数逼近过程的监督数据为:
< S 1 , G 1 > , < S 2 , G 2 > , ⋯   , < S t , G T > <S_1, G_1>, <S_2, G_2>, \cdots ,<S_t, G_T> <S1,G1>,<S2,G2>,,<St,GT>
对于蒙特卡洛有:
Δ w = α ( G t − v ^ ( s t , w ) ) ∇ w v ^ ( s t , w ) = α ( G t − v ^ ( s t , w ) ) ⋅ x ( s t ) \Delta w = \alpha({\color{red}G_t} - \hat{v}(s_t, w))\nabla_w\hat{v}(s_t, w) \\ = \alpha({\color{red}G_t} - \hat{v}(s_t, w)) \cdot x(s_t) Δw=α(Gtv^(st,w))wv^(st,w)=α(Gtv^(st,w))x(st)
其中奖励 G t G_t Gt 是无偏(unbiased)的: E [ G t ] = v π ( s t ) E[G_t] = v_\pi(s_t) E[Gt]=vπ(st) 。值得一提的是,蒙特卡洛预测过程的函数逼近在线性或者是非线性都能收敛。

对于TD算法,使用 v ^ ( s t , w ) \hat{v}(s_t, w) v^(st,w) 来代替 TD Target。所以在价值函数逼近(VFA)使用的训练数据如下所示:
< S 1 , R 2 + γ v ^ ( s 2 , w ) > , < S 2 , R 3 + γ v ^ ( s 3 , w ) > , ⋯   , < S T − 1 , R T > <S_1, R_2+\gamma \hat{v}(s_2, w)>,<S_2, R_3+\gamma \hat{v}(s_3, w)>,\cdots,<S_{T-1}, R_T> <S1,R2+γv^(s2,w)>,<S2,R3+γv^(s3,w)>,,<ST1,RT>
于是对于 TD(0) 在预测过程的函数逼近有:
Δ w = α ( R t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) ) ∇ w v ^ ( s t , w ) = α ( R t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) ) ⋅ x ( s ) \Delta w = \alpha({\color{red}R_{t+1} + \gamma \hat{v}(s_{t+1}, w)}-\hat{v}(s_t, w))\nabla_w\hat{v}(s_t, w) \\ = \alpha({\color{red}R_{t+1} + \gamma \hat{v}(s_{t+1}, w)}-\hat{v}(s_t, w))\cdot x(s) Δw=α(Rt+1+γv^(st+1,w)v^(st,w))wv^(st,w)=α(Rt+1+γv^(st+1,w)v^(st,w))x(s)
因为TD中的 Target 中包含了预测的 v ^ ( s , t ) \hat{v}(s,t) v^(s,t) ,所以它对于真实的 v π ( s t ) v_\pi(s_t) vπ(st) 是有偏(biased)的,因为监督数据是估计出来的,而不是真实的数据。也就是 E [ R t + 1 + γ v ^ ( s t + 1 , w ) ] ≠ v π ( s t ) E[R_{t+1} + \gamma \hat{v}(s_{t+1}, w)] \neq v_\pi(s_t) E[Rt+1+γv^(st+1,w)]=vπ(st) 。所以把这个过程叫做 semi-gradient,不是完全的梯度下降,而是忽略了权重向量 w 对 Target 的影响。

三、控制过程中的价值函数逼近

类比于MC 和 TD 在使用 Q 表格时的更新公式,对于策略控制过程可以得到如下公式。和上面预测过程一样,没有真实的 q π ( s , a ) q_\pi(s,a) qπ(s,a) ,所以对其进行了替代:

  • 对于 MC,Target 是 G t G_t Gt

Δ w = α ( G t − q ^ ( s t , a t , w ) ) ∇ w q ^ ( s t , a t , w ) \Delta w = \alpha({\color{red}G_t} - \hat{q}(s_t, a_t, w))\nabla_w\hat{q}(s_t, a_t, w) Δw=α(Gtq^(st,at,w))wq^(st,at,w)

  • 对于 Sarsa,TD Target 是 R t + 1 + γ q ^ ( s t + 1 , a t + 1 , w ) R_{t+1} + \gamma \hat{q}(s_{t+1}, a_{t+1}, w) Rt+1+γq^(st+1,at+1,w) :

Δ w = α ( R t + 1 + γ q ^ ( s t + 1 , a t + 1 , w ) − q ^ ( s t , a t , w ) ) ⋅ ∇ w q ^ ( s t , a t , w ) \Delta w = \alpha ({\color{red}R_{t+1} + \gamma \hat{q}(s_{t+1}, a_{t+1}, w)} - \hat{q}{(s_t, a_t, w)})\cdot \nabla_w\hat{q}{(s_t, a_t, w)} Δw=α(Rt+1+γq^(st+1,at+1,w)q^(st,at,w))wq^(st,at,w)

  • 对于 Q-Learning,TD Target 是 R t + 1 + γ    m a x a    q ^ ( s t + 1 , a t , w ) R_{t+1} + \gamma\;max_a\; \hat{q}(s_{t+1}, a_t, w) Rt+1+γmaxaq^(st+1,at,w) :

Δ w = α ( R t + 1 + γ    m a x a    q ^ ( s t + 1 , a t , w ) − q ^ ( s t , a t , w ) ) ⋅ ∇ w q ^ ( s t , a t , w ) \Delta w = \alpha ({\color{red}R_{t+1} + \gamma\;max_a\; \hat{q}(s_{t+1}, a_t, w)} - \hat{q}{(s_t, a_t, w)})\cdot \nabla_w\hat{q}{(s_t, a_t, w)} Δw=α(Rt+1+γmaxaq^(st+1,at,w)q^(st,at,w))wq^(st,at,w)

四、关于收敛的问题

在这里插入图片描述

在上图中,对于使用 Q 表格的问题,不管是MC还是 Sarsa 和 Q-Learning 都能找到最优状态价值。如果是一个大规模的环境,采用线性特征拟合,其中MC 和 Sarsa 是可以找到一个近似最优解的。当使用非线性拟合(如神经网络),这三种算法都很难保证能找到一个最优解。

其实对于off-policy 的TD Learning强化学习过程收敛是很困难的,主要有以下原因:

  • 使用函数估计:对于 Sarsa 和 Q-Learning 中价值函数的的近似,其监督数据 Target 是不等于真实值的,因为TD Target 中包含了需要优化的 参数 w,也叫作 半梯度TD,其中会存在误差。
  • Bootstrapping:在更新式子中,上面红色字体过程中有 贝尔曼近似过程,也就是使用之前的估计来估计当前的函数,这个过程中也引入了不确定因素。(在这个过程中MC会比TD好一点,因为MC中代替 Target 的 G t G_t Gt 是无偏的)。
  • Off-policy 训练:对于 off-policy 策略控制过程中,使用 behavior policy 来采集数据,在优化的时候使用另外的 target policy 策略来优化,两种不同的策略会导致价值函数的估计变的很不准确。

上面三个因素就导致了强化学习训练的死亡三角,也是强化学习相对于监督学习训练更加困难的原因。

下一篇就来介绍本系列的第一个深度强化学习算法 Deep Q-Learning(DQN)

参考资料:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值