
机器学习
文章平均质量分 95
jsfantasy
虚心、实腹、弱志、强骨
展开
-
强化学习15——Proximal Policy Optimization (PPO)算法详细推导
在Policy Gradient推导和REINFORCE算法两篇文章介绍了PG算法的推导和实现,本篇要介绍的算法是Proximal Policy Optimization (PPO),中文叫近短策略优化算法。PPO由于其非常的好的性能与易于实现等特性,已被作为OpenAI公司的首选算法,可见这个算法的优秀性能,具体可以查看OpenAI-PPO一、Policy Gradient 的不足采样效率低下:PG采用MC采样方式,每次基于当前的策略对环境采样一个episode数据,然后基于这些数据更新策略,这个过原创 2022-01-27 17:34:20 · 16674 阅读 · 4 评论 -
自编码器 Tensorflow 实战 MNIST 数据集
1、生成模型1.1、什么是生成模型 概率统计层面:能够在给丁某一些隐含参数的条件下,随机生成观测数据的这样一种模型,称之为“生成模型”。它给观测值和比周数据系列制定一个连和概率分布 机器学习层面:直接对数据进行建模,比如根据某个变量的概率密度函数进行数据采样。在贝叶斯算法中,直接对连和概率分布P(x,y)进行建模,然后利用贝叶斯公式进行求解P(y|x)。1.2、生成模型分类第一类:完全表示出数据确切的分布函数第二类:没有办法完全表示出确切的分布函数,但是,能够做到的是新的数据的生成,而具原创 2020-07-20 10:51:00 · 1184 阅读 · 0 评论 -
kNN 算法实现
kNN Algorithmimport numpy as npimport matplotlib.pyplot as pltraw_data_X = [[3.4, 2.3], [3.1, 1.8], [1.3, 3.4], [3.6, 4.7], [2.3, 2.9], ...原创 2020-03-05 22:52:05 · 232 阅读 · 0 评论 -
PCA 重建 Fashion_mnist 数据集
import tensorflow as tffrom tensorflow import kerasimport numpy as npfrom sklearn.decomposition import PCAimport matplotlib.pyplot as pltfrom PIL import Image读取数据(x_train, y_train), (x_test, y...原创 2020-03-03 11:00:45 · 992 阅读 · 0 评论 -
自编码器重建 Fashion_mnist 数据集
自编码器from PIL import Imageimport tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import Sequential, layersimport numpy as npfrom matplotlib import pyplot as plt加载数据集(x_train,...原创 2020-03-03 10:57:25 · 794 阅读 · 1 评论