spfa 的优化

SPFA 与堆优化的 Dijkstra 的速度之争不是一天两天了,不过从这次 USACO 月赛题来看,SPFA 用在分层图上会比较慢。标程是堆优化的 Dijkstra,我写了一个非常朴素的 SPFA,只能过 6/11 个点。SPFA 是按照 FIFO 的原则更新距离的,没有考虑到距离标号的作用。实现中 SPFA 有两个非常著名的优化:SLF 和 LLL。

  SLF:Small Label First 策略。

  实现方法是,设队首元素为 i,队列中要加入节点 j,在 dj<=di 时加到队首而不是队尾,否则和普通的 SPFA 一样加到队尾。

  LLL:Large Label Last 策略。

  实现方法是,设队列 Q 中的队首元素为 i,距离标号的平均值为 avg(d),每次出队时,若 di>avg(d),把 i 移到队列末尾,如此反复,直到找到一个 i 使 ,di<=avg(d)将其出队。

  加上 SLF 优化后程序多了一行,过了 9/11 个点。你问我怎么用 SPFA AC 这个题?利用分层图性质,算完一层再算一层,对每一层计算用 SPFA,加上上面的优化,程序飞快:最强的优化要利用题目的特殊性质。

char str[maxn][maxn];
int vis[maxn][maxn],dis[maxn][maxn],n,m;
int ans[30],sum,cnt;
int dx[] = {-1,-1,0,1,1,1,0,-1},dy[] = {0,1,1,1,0,-1,-1,-1};
deque<PII>q;
void spfa()
{
    while(!q.empty()){
        PII f = q.front();q.pop_front();
        //LLL优化
        if(dis[f.fi][f.se] * cnt > sum){
            q.push_back(f);
            continue;
        }
        sum -= dis[f.fi][f.se];cnt--;
        vis[f.fi][f.se] = 0;
        for( int i = 0; i < 8; i++ ){
            int nx = f.fi + dx[i],ny = f.se + dy[i];
            if(nx < 1 || nx > n || ny < 1 || ny > m)continue;
            int w = (str[nx][ny] != str[f.fi][f.se]);
            if(dis[nx][ny] > dis[f.fi][f.se] + w){
                dis[nx][ny] = dis[f.fi][f.se] + w;
                if(!vis[nx][ny]){
                    vis[nx][ny] = 1;
                    //SLF优化
                    if(dis[nx][ny] < dis[q.front().fi][q.front().se]){
                        q.push_front(mp(nx,ny));
                    }
                    else {
                        q.push_back(mp(nx,ny));
                    }
                    sum += dis[nx][ny];cnt++;
                }
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值