SPFA 与堆优化的 Dijkstra 的速度之争不是一天两天了,不过从这次 USACO 月赛题来看,SPFA 用在分层图上会比较慢。标程是堆优化的 Dijkstra,我写了一个非常朴素的 SPFA,只能过 6/11 个点。SPFA 是按照 FIFO 的原则更新距离的,没有考虑到距离标号的作用。实现中 SPFA 有两个非常著名的优化:SLF 和 LLL。
SLF:Small Label First 策略。
实现方法是,设队首元素为 i,队列中要加入节点 j,在 dj<=di 时加到队首而不是队尾,否则和普通的 SPFA 一样加到队尾。
LLL:Large Label Last 策略。
实现方法是,设队列 Q 中的队首元素为 i,距离标号的平均值为 avg(d),每次出队时,若 di>avg(d),把 i 移到队列末尾,如此反复,直到找到一个 i 使 ,di<=avg(d)将其出队。
加上 SLF 优化后程序多了一行,过了 9/11 个点。你问我怎么用 SPFA AC 这个题?利用分层图性质,算完一层再算一层,对每一层计算用 SPFA,加上上面的优化,程序飞快:最强的优化要利用题目的特殊性质。
char str[maxn][maxn];
int vis[maxn][maxn],dis[maxn][maxn],n,m;
int ans[30],sum,cnt;
int dx[] = {-1,-1,0,1,1,1,0,-1},dy[] = {0,1,1,1,0,-1,-1,-1};
deque<PII>q;
void spfa()
{
while(!q.empty()){
PII f = q.front();q.pop_front();
//LLL优化
if(dis[f.fi][f.se] * cnt > sum){
q.push_back(f);
continue;
}
sum -= dis[f.fi][f.se];cnt--;
vis[f.fi][f.se] = 0;
for( int i = 0; i < 8; i++ ){
int nx = f.fi + dx[i],ny = f.se + dy[i];
if(nx < 1 || nx > n || ny < 1 || ny > m)continue;
int w = (str[nx][ny] != str[f.fi][f.se]);
if(dis[nx][ny] > dis[f.fi][f.se] + w){
dis[nx][ny] = dis[f.fi][f.se] + w;
if(!vis[nx][ny]){
vis[nx][ny] = 1;
//SLF优化
if(dis[nx][ny] < dis[q.front().fi][q.front().se]){
q.push_front(mp(nx,ny));
}
else {
q.push_back(mp(nx,ny));
}
sum += dis[nx][ny];cnt++;
}
}
}
}
}