机器学习
小小哆啦的口袋
不能兼济天下,只愿能够独善其身。
求知若渴,虚心若愚。
展开
-
逻辑回归的参数详解及属性
逻辑回归类中实现了二分类、一对多分类,多项式逻辑回归。针对优化算法的解释如下:“lbfgs”, “sag” 和 “newton-cg” solvers (求解器)只支持 L2 惩罚项,对某些高维数据收敛更快。这些求解器的参数 `multi_class`设为 “multinomial” 即可训练一个真正的多项式 logistic 回归 [5] ,其预测的概率比默认的 “one-vs-rest...原创 2018-08-24 14:56:13 · 19117 阅读 · 0 评论 -
GBDT(MART) 迭代决策树入门教程 | 简介
转自: http://blog.csdn.net/suranxu007/ https://blog.csdn.net/suranxu007/article/details/49910323读完原创作者的这篇博客,对GBDT有了进一步的了解。GBDT包括三部分:regression decision tree ; gradient boosting ;shinkage首先GBDT中的树...转载 2018-08-23 15:42:39 · 197 阅读 · 0 评论 -
sklearn中gridsearchcv 与pipeline结合使用
X = train[column]y=(train["class"]-1).astype(int)tfid = TfidfVectorizer(use_idf = 1, smooth_idf = 1, sublinear_tf = 1, max_df = ...原创 2018-08-21 21:56:02 · 1690 阅读 · 0 评论 -
机器学习--Logistic回归计算过程的推导
转自:https://blog.csdn.net/ligang_csdn/article/details/53838743(很多讲逻辑回归的文章都没有给出详细的推导,只是列出最后的计算公式,今天在网上看到一篇解释得非常详细的文章,赶紧转载一下:【机器学习笔记1】Logistic回归总结(http://blog.csdn.net/dongtingzhizi/article/details/1...转载 2018-08-19 19:37:41 · 619 阅读 · 1 评论 -
SVM算法推导
(本文仅供自己参考,防止遗忘,想要了解更多得小伙伴请移步别的大神博客)首先从SVM得分类谈起:分为三类,第一个约束条件最强,最后一个约束最宽泛,如下:此时即可求出w,b。然后:一是因为原始问题转换为对偶问题更容易求解,二是为了自然的引入核函数,进而推广到非线性分类问题引入了拉格朗日乘子,构建拉格朗日函数。这样一来,就转换为求alpha的最大的问题,然后就不用求w,b...原创 2018-07-20 10:31:27 · 282 阅读 · 0 评论