DataFrame中diff函数的应用

DataFrame.diff(periods=1axis=0)

>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6],
...                    'b': [1, 1, 2, 3, 5, 8],
...                    'c': [1, 4, 9, 16, 25, 36]})
>>> df
   a  b   c
0  1  1   1
1  2  1   4
2  3  2   9
3  4  3  16
4  5  5  25
5  6  8  36
>>> df.diff()
     a    b     c
0  NaN  NaN   NaN
1  1.0  0.0   3.0
2  1.0  1.0   5.0
3  1.0  1.0   7.0
4  1.0  2.0   9.0
5  1.0  3.0  11.0

Difference with previous column

>>> df.diff(axis=1)
    a    b     c
0 NaN  0.0   0.0
1 NaN -1.0   3.0
2 NaN -1.0   7.0
3 NaN -1.0  13.0
4 NaN  0.0  20.0
5 NaN  2.0  28.0

Difference with 3rd previous row

>>> df.diff(periods=3)
     a    b     c
0  NaN  NaN   NaN
1  NaN  NaN   NaN
2  NaN  NaN   NaN
3  3.0  2.0  15.0
4  3.0  4.0  21.0
5  3.0  6.0  27.0

Difference with following row

>>> df.diff(periods=-1)
     a    b     c
0 -1.0  0.0  -3.0
1 -1.0 -1.0  -5.0
2 -1.0 -1.0  -7.0
3 -1.0 -2.0  -9.0
4 -1.0 -3.0 -11.0
5  NaN  NaN   NaN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值