Spark Core之WordCount(reduce、aggregate、fold)

这篇博客详细介绍了在Spark Core中如何使用reduce、aggregate和fold方法进行WordCount操作,涵盖了大数据处理的基础知识和Scala编程技巧。
摘要由CSDN通过智能技术生成

鄙人学习笔记

reduce方式:

  // reduce-wordcount
  def reduce_wordcount(words:RDD[String],sc:SparkContext):Unit={
    //格式转换:word ==> Map[(word,1)]
    val mpWords = words.map(word => {
      //可变map
      scala.collection.mutable.Map[String, Long]((word, 1))
    })
    val wordCount = mpWords.reduce((mp1, mp2) => {
      mp2.foreach{
        case (word,count)=>{
          //看1中有2的单词否,没有填上
          var newCount = mp1.getOrElse(word,0L)+count
          mp1.update(word,newCount)
        }
      }
      mp1
    })
    println(s"reduce_wordcount:${wordCount}")
  }

aggregate方式:

  // aggregate-wordcount
  def aggregate_wordcount(words:RDD[String],sc:SparkContext):Unit={
    val wordCount = words.aggregate(scala.collection.mutable.Map[String,Long]())(
      //分区内计算
      (mp, word) => {
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值