国家信息化专家咨询委员会常务副主任周宏仁
如何实施智能制造,需要考虑智能制造的三个支点:产品、装备和过程。
图1 智能制造的三个支点
第一个需要考虑的是推动智能制造的目标是什么。显然,企业追求的是产品,而不是要把企业搞的有多时髦。企业销售产品的时候,不是要宣传企业的生产线有多漂亮、多现代,而一定要说明这个产品的价值何在。产品是企业面向社会的表现。智能制造的目标是产品,而不是智能制造本身。因此,产品的智能化是企业必须考虑的首要问题之一。智能制造如果不能生产出智能的产品,智能制造就失去了时代的意义。而且,企业的产品如果不是智能化的,产品和企业今后被淘汰的可能性就很大。
第二个支点是装备,生产过程(包括研发、设计)中的每一个关键环节上的装备,一定要智能化。如果这个智能化实现不了,劳动生产力和劳动效率就不可能得到很大提高,企业可能就没有竞争力。不是数字化、网络化和智能化的生产装备,就不是这个时代的先进制造装备。而且,如果设备没有智能化,也可能无法生产出企业想要生产的智能化产品。
第三个支点是企业生产过程的智能化问题。装备智能化解决的是生产过程中“点”的智能化问题;企业只有实现生产全过程的智能化,才能实现企业全局的智能化,才能够实现智能化效益的最大化。
智能产品是第一支点
一个机床生产厂,生产装备和过程如果都是智能化的,而它生产出来的机床却是一般的机床,没有智能化的要素,那么这个机床厂的前途就非常堪忧。因为,他自己都不会去购买这样不够智能化的机床。
因此,任何一个企业在考虑其智能制造如何发展的时候,首先应该想到的是自己的产品怎么实现智能化。即使生产过程没有部分或全部实现智能化,能够把智能的产品做出来,那么企业还是应该首先考虑产品的智能化问题。
产品的智能化,是通过产品中包含有各种复杂程度不等的计算机系统,尤其是嵌入式系统,来实现的。嵌入式系统不仅可以成为智能制造最重要最具有代表性的技术,而且会形成一个庞大的产业链。中国的嵌入式系统,发展的速度比较缓慢——尽管起步并不晚。产品所用的嵌入式系统,绝大多数对于芯片的要求都不一定特别高,一般也就是几十纳米到上百纳米,甚至档次再低一点,也或许够用。因此,技术难度并不大。
产品智能化是当今计算技术发展的一个新的重大趋势。计算技术发明的初衷是为了科学计算。而后,发展为支持人类各种业务活动的信息处理和传播,即业务计算。业务计算的覆盖范围已经比科学计算要大得多。上世纪90年代以后,随着互联网的发展,QQ、微信、Facebook等开始崛起,计算技术渗入了人们的社会生活,大大地推动了社会计算的发展,计算技术的应用覆盖范围则更进一步扩大。现在,计算技术开始向各种产品领域渗透,提升产品的智能化水平。智能产品数以百亿,甚至千亿计,产品计算的覆盖范围可以说是“无远弗届”,一定会给整个IT产业带来巨大的变化。因此,计算技术应用的下一个热点,是产品计算。所有的产品都要程度不等地走向智能化,计算都有可能参与其中。这一点,跟工业互联网快速发展的需求有很大的关系。
图2 计算技术应用的发展阶段
现在的智能产品跟以前所谓的嵌入式系统功能需求还不完全一样,主要功能体现在三个方面。第一个是传感,产品需要能够感受外部的情况变化,或者能够整合产品内部的数据。第二个是计算,包括产品本身的操作系统,以及产品使用的各种应用系统。例如,从数据分析到高端计算——也就是人工智能。第三个是联网,随着全球物联网的发展,产品可能具有雾计算、边缘计算和云计算相联结的功能。因此新一代的智能产品,跟以前讲的嵌入式系统的概念已经大不相同。
图3 无处不在的智能产品
智能装备是最大难点
装备是智能制造最大的难点。生产装备一般都比较复杂,而且批量可能不大,所采用的工业软件也往往非常复杂。这使得生产成本很高,市场很小,因此愿意或有实力从事智能装备制造的企业并不多。而且,由于装备的开发周期长,导致企业经营的风险很大。另外,装备制造的难点很大程度上是在软装备上面,即以工业软件为代表的软装备,包括CAD/CAE这样的软件工具。没有软装备,就不可能有“数字化、网络化、智能化”。抽去软件,信息化的一切成果都不复存在。工业软件首先是一个工业产品,而且往往是高端工业产品。这是中国制造2025主要的难点,而工业界对这一点的认识,还很不充分。
过程智能化
发达国家的制造业在生产装备智能化这一点上,已经非常领先。尤其是日本和德国,已经基本上垄断了全球重大制造业生产装备的市场。而智能制造的下一步的发展,就是要实现过程的智能化,完成从装备这个“点”向过程这条“线”的发展。
过程智能化最典型的代表,正是工业4.0和工业互联网的奋斗目标。工业4.0提出,企业的信息系统要走向一体化,包括纵向一体化和横向一体化。纵向一体化就是《三论智能制造》的系列之一中提到的企业的内部网,而横向一体化正是企业的外部网。现在,要把内部网和外部网完全整合在一起,将数据完全打通。
图4 内部网和外部网的一体化
此外,要把整合之后的系统,打造成一个智能物理系统(Cyber-Physical-System, CPS)。这里的Cyber意指计算机或计算机网络。在很多现代化企业里,不管内部网或外部网,都还只是一个独立的计算机网络或者系统,或者实现了初步的整合。如何跟企业这个物理实体融为一体,有效地运转,是一门大学问。美国国家科学基金(NSF)在2006年的一个报告中指出,现有的、工业时代发展出来的系统科学(包括系统工程理论),还不能很好地回答这类问题。他们认为,企业这个物理实体与其内含的计算机和网络系统如何协同一致、高效精确的工作,如何增强这类系统的适应性、自主性、功能性、可靠性、安全性、可用性和效率,将会发展成为一个新的系统工程学,是美国需要重点发展的前沿命题。实际上,美国关于CPS的研究报告非常多,对这个命题非常关注。
过程智能化的实现
工业4.0或者工业互联网的目标,不仅要把内部网、外部网连起来,而且要变成一个智能物理系统(CPS)。二者都可以通过一个“5C(五层)”结构来表述。
最下面一层是智慧的连接层,第二层是数据转换成信息,第三层是Cyber层,是企业的云计算数据中心。在这里,需要把第二层处理所得的有效数据,与企业计算机系统中相对应的期望值做对比分析。第四层是认知层,根据对比差异,找到问题之所在及解决问题的方法。因此,这一层实际上是一个决策层。第五层是配置层,可以按照决策要求,通过计算机网络,对人、对物、对计算机进行重新配置或更改。这样的一个五层结构,构成了一个标准的反馈控制系统,可以对企业的控制对象,即:人(员工)、机器、计算机系统、各种物理实体等,进行实时的反馈和控制。这样的一个反馈系统,其各层次所对应的技术支撑,如图5所示。正是利用这些当下最时髦的先进技术,工业互联网实现了企业整个业务活动全过程的的智能控制。
图5 工业互联网和工业4.0的“5C(五层)”架构
根据这个思路,工业4.0和工业互联网在2015年分别完成了系统的架构设计。工业互联网的参考架构,可以清楚地说明系统的要素和相互之间的关系,并提供了一个开放的“工业互联网系统设计指南”。应该强调的是,这里说的是指南,是给出了一个大家共同努力、同向而行的方向,而不是标准。
这个架构设计描述了工业互联网系统的内外三层结构。从边缘层,到平台层,再到企业层,如果我们把它看作是一个球体的话,外面就是设备端的边缘层,中间是平台层(工业互联网平台,主要指这一部分。当然现在也有将工业互联网平台泛化的趋势),最内层是企业层。在边缘层上主要是边缘的网关,采集各种各样的数据;送到平台层之后,平台层对数据做必要的处理和分析;分析完之后,再送达企业层,送到企业的应用系统。企业会根据不同的应用做不同的分析,做出判断和决策,将数据再往回传送到平台层和边缘层,直至送达企业内外联接的各个部门和单位。
图6 工业互联网架构的内外三层结构
显然,数据分析和处理在工业互联网系统中极为重要,包括:端点数据的获取、从数据中提取信息的先进数据处理技术,各种决策模型的分析计算,以及系统结果的输出。其中,大量使用的是计算科学的办法:需要建模,需要算法,需要数据等等,最后产生的是决策数据。当然,安全、可信、隐私等,在结构中也有详细的考虑。
智能制造与工业互联网
现在,国内关于工业互联网平台的概念讨论很多。工业互联网平台,是一个以企业为中心的平台,而不是说在整个工业行业建一个大的所谓“工业互联网平台”。所谓平台化是发展的趋势,其实是指企业的平台化,每一个大企业都会有自己的一个企业平台,而不会把自己的业务搬到其他企业的平台上去。波音的平台不会到中航工业的平台上,空客的平台也不会到波音的平台上去。如果一定要说有一个工业和产业共用共享的平台,那这个平台就是全球物联网平台(Internet of Things, IOT),它不是为哪个工业,为哪个部门而设计的,而是面向全世界各行各业乃至个人服务的全球物联网。
工业互联网平台是一个理想的“过程”智能化的平台。设想非常完美,但系统非常复杂。在实现过程当中,未知数还很多,不同产业类别的企业平台之间的差异也很大。例如,中航工业的平台,几乎不太可能拿去给中石油用,基本上要推倒重建。所以,每个企业一定要从自身的紧迫需求和实际效益出发,分步推进,绝对不能盲目跟随,尤其考虑到当前中国制造业发展的水平和信息化的水平离国际先进水平相差仍然很大,“过程”智能化的路途还比较遥远。
如果把智能制造的全部资源和精力都投在工业互联网平台上,又把平台理解为产业的平台,可能就误判了智能制造的发展方向。当务之急,还是我们的产品和装备的智能化问题,这对当下的中国来讲,是智能制造的重点努力方向。
深度报告|全球制造业新趋势
导读
对按需制造趋势有所准备的企业终将蓬勃发展。但企业必须现在就行动起来,重新审视自身的长期制造战略,采用优化流程、系统与先进科技,制定生产决策,全面变革与客户互动方式,直面行业中的竞争与挑战。
文/先进制造业
概述
在下一轮制造业革命中,3D打印、机器人等科技将改变工厂生产的方式,而企业也将重新考虑其产品以及生产基地。小批量、高度个性化的产品将在流水线完成组装,产品之精良就好比高科技版的传统手工艺品。制造业革命即将到来;未来五至十年内,所有行业的制造企业都将卷入一场争夺战,力争根据客户需求有效地进行生产。客户需要时就可以把定制的产品送到客户手中,以满足客户不同的喜好。企业必须作出战略选择以维持较强的竞争力,投资科技以确保能够持续分析客户偏好和购买习惯相关数据,从而迅速应对市场变化。工厂规模越来越小,交付周期将缩至最短,价值链也将变得更短。制造企业将实行分权式管理,简化缩短供应链,大幅拉近与客户的距离。
尽管科技使这一新的制造模式成为可能,但落实这一模式的推动力来自客户。 在新兴市场以及发达地区,客户越发希望产品能够迎合当地的文化偏好,而非同质化的全球品牌及B2B服务。早在20世纪80年代,汽车行业就成为本地化模 式的领导者,日本车企以定制服务打开美国市场。然而,其他行业直到最近才采用这一模式,冰箱、牙膏、家具、服装以及软件行业开始根据各个地区的市场调整自身的产品设计。电子商务的普及改变了客户的体验,人们可以更加了 解有关产品及其竞争者产品的信息、定价详情,并通过同业评论获悉产品质量。史无前例地,客户可以合理要求大规模的厂商为其提供本地化的产品。
受益于按需生产模式(point-of-demand model),灵活应变的制造企业会赚得盆满钵满。随着供应系统的反应能力不断提升,当地客户需求也更加清晰,库存管理效率有所提高,大批量仓库产品的运输成本也将随之降低。供应链管理及生产计划的相关费用也将有所削减。在客户需要时,企业若能为客户量身定制最符合其需要的产品,就会收获更高的销售回报。相反,随着按需制造逐渐盛行,拥有全球工厂网络和大型集中的工厂,并采用传统运营系统、组织结构与流程进行管理的企业,可能会发现他们的商业模式已经过时了。
放眼全球,本地制造
一家小型的美国初创公司Local Motors揭示了未来制造业引人入胜的一面。该公司在全球有五家微型工厂,主要使用3D打印设备生产一款名为Olli的无人驾驶班车,由IBM Watson人工智能技术支持,通过智能手机app叫车,支持声控;一架可载货的空中客车无人驾驶飞机Zelator;全球首辆3D打印汽车Strati,诞生于国际制造科技展上,且仅需44个小时。该车即使不能和跑车媲美,也适于驾驶。
不过,Local Motors的3D打印不过是这家公司业务模式中值得研究的冰山一角。 该公司还在一个全球网络平台上利用众包征集产品设计,参与者会在公开的论坛上提出对于集体消费的看法。在Olli的征集活动中,获胜的设计师是一个从未做过工业产品设计的24岁哥伦比亚青年,他不仅获得一笔小额现金奖励和销售提成,还有机会在Local Motors制造团队中继续工作、学习。
Local Motors的生产布局计划也同样引人注目。随着微型工厂的概念不断发展,Local Motors将在客户所在地建立新工厂,所生产的每件产品在同类中都是独一无二、完全符合各地客户的喜好与要求。在3D微工厂中,占主导地位的不再是生产规模,而是从工程、设计、零件、劳动及效率上节省的潜在资金。Local Motors称之为“在视野内创造收益”,即公司为工厂所在地的客户提供实用的、有吸引力的定制产品,定价也十分符合产品的独特价值。
Local Motors的业务仍处在萌芽阶段,日后的成败还难以预料,但它的核心价值在于推动了行业内生产法则的重大转变,这是各类规模的制造企业在未来数年内不得不考虑的问题。几十年来为了追求更低的生产成本,实现规模经济,制造企业不断扩大工厂布局、使供应链延伸到新兴市场,通过复杂物流网络在世界各地大量分销产品。而今,制造企业发现他们的全球化战略已经丧失了活力。尤其是他们的集中式管理结构、冗长的供应链、缺乏多样性的产品,以及耗时的产品运输。这些都影响着制造企业的区域灵活性,在某些情况下,还会让他们在本地竞争中处于劣势。
相反,对于成功的制造企业来说,新的战略原型将基于一个相对简单的想法: 最具效益的制造模式是能够准确把握产量,满足客户需求,留有足够的空间进行本地和个人定制。这一理念的实现很大一部分缘于科技的进步,包括3D打印、工厂创新、电子商务、数据分析、物联网等等。即使市场需求变幻莫测,有了科技的助力,企业总能把握客户兴趣—新兴市场的中产阶级正不断壮大—和客户对特定产品的需求。虽然一些产品的定制化程度将高于其他类别的产品,但鉴于产品质量改善,市场反应加速,工厂规模缩小,交付周期缩至最短,供应链协作得到加强,分权式管理得以实施,总的来说制造企业与客户之间的距离将大大缩短。
另外,按需生产模式的影响将超出企业对消费者的领域。B2B领域的供应商也将面临压力,需要提升自身的应对能力,缩短供应链,更积极地服务终端客户,这也是他们的客户(制造企业)完成战略转型的一部分。
这意味着一些企业的运营存在问题:当下大量投资拥有众多大型集中式工厂的全球工厂网络,通过传统运营系统、组织机构与流程进行管理的制造企业发现他们运营模式被淘汰的速度超过了预期。但是应变能力最强的制造企业从新模式中收益颇丰。当供应系统更加灵活多变,客户需求越发清晰,库存管理将得以提升,大批量仓储抛弃滞销的存货,产品的运输成本也随之下降。此外,耗资巨大的长期生产计划以及供应链管理的减少,也将为企业节省费用与资源。企业如果能超越竞争对手,生产出最切合客户需求的产品—在关键时刻提供客户所需的产品—其销售利润将会大幅增长。
态度转变
过去数十年中,全球制造业形成一种定式:通过传统的大批量生产计划实现成本削减目标。在区域中心(通常在制造企业本国市场以外的发展中国家)建立工厂,成为削减劳动力成本,与区域内低成本供应商结成联盟的一个途径;只要在新兴国家投资经营所享受的优惠政策足够克服物流低效以及产品上市时间方面的困难,这一途径便有利可图且意义重大。
但在各种趋势的共同影响下,这一战略模式过时了,价值创造从生产转移至下游的客户与产品定制。原因之一是,新兴国家工资上涨和对能源价格波动的担忧削弱了跨国公司通过海外市场获得的竞争优势。因此,众多大型工业企业改变战略,选择迁回美国及欧洲本土市场,终结产品在海外生产后转运回母国的模式。自2010年起,(当年美国制造业的就业率跌落至当代最低点)先前从海外为美国制造企业供应物资的企业通过回流或外商直接投资为美国创造超过33.8万个就业岗位(图一)。
图一:
最近,政治波动对跨国公司的制造产业布局和供应链决策产生了影响。英美两国的新政府提出了保护主义,释放出全球贸易再度放缓的信号,而过去几年全球贸易一直在走下坡路。部分原因来自贸易自由化进度放缓而对于汇率波动、 新关税或其他以贸易为基础的税收的担忧与日俱增。基于上述现状,选择在产品销售地进行生产更为经济可行,而企业也都采用了这一模式。例如,英国脱欧公投后,英镑应声暴跌,导致企业对外贸易费用上涨,英国食品公司转而与国内供应商合作,力求降低成本。“产地直销” 这一理念在汽车行业越来越举足轻重,雷诺-日产首席执行官Carlos Ghosn对路透社表示:“毫无疑问,我们必须顺应时势。”
然而,最重要的是,制造企业与客户之间瞬息万变的关系正是按需生产战略变革的核心推动力,且对变革有着长期的影响。在所有地区的市场,尤其是需求不断增长、中产阶级持续壮大的新兴国家,客户越来越希望得到能够迎合当地文化偏好的产品,而非同质化的全球品牌及B2B服务。
尼尔森近期针对61个国家3万名消费者开展的一项调查显示,四分之三的受访者购买产品意向主要基于该产品是否在本地生产。亚太地区、非洲及中东地区的民众更是如此。在对全球企业的调查中,企业也持相同意见,这也加速了产品定制化的进程;从冰箱到牙膏、薯片到软件,所有的产品都根据各个地区的偏好重新设计。尤其是电子商务及其许多在移动互联网上涉及更简单透明交易的分支领域,都颠覆了客户体验,使消费者能够了解更多的有关产品及其潜在竞争者产品的信息、定价详情,并通过同业评论了解产品质量。史无前例地,客户可合理要求主流制造企业为其提供本地化的产品。当企业通过定制化服务满足了客户需求,客户忠诚度也随之提高(图二)。
图二:
技术促进
毋庸置疑,经济与消费趋势助力销售地制造成为大势的同时,其本身也是股不可阻挡的力量。但若没有科技方面的显著突破—按需生产的核心、激发其潜能的关键,经济与消费趋势也就无法发挥其作用,或至少使企业丧失采取对应措施的能力。
这一系列新兴科技可大幅简化供应链,缩短产品从工厂送达至客户的路径,也令小批量生产及产品定制化变得更为经济可行。尽管仍然处在起步阶段,但科技已深刻改变了制造业格局,为小规模竞争者开放准入市场;拓展新途径,使企业可以更高效、低成本地为客户提供更优质的定制产品;促使成熟企业培育一系列可持续的本地化制造能力、应用创新生产模式。制造企业制定按需生产框架时可应用的先进科技有以下几类:
■ 客户导向型软件
这一类先进软件应用技术的形式很简单,最佳代表是苹果公司iPhone的研发以及全球发售的模式。苹果公司只是将iPhone定位为一般硬件装置,可通过程序及应用程式实现个性化设置与持续升级,从而满足个人用户的喜好;苹果公司相信定制化软件将为其产品带来可持续性的价值。在实际中,每位iPhone用户通过苹果公司提供的平台,装载各自所需的第三方开发的针对各区域需求的应用程序,自行完成最终产品的配置,实现用户定制化。
苹果公司的这一模式,其他通讯与计算机公司也在采用。这样的模式是客户导向按需服务的相对基础应用,很少涉及软件更深层的技术领域。谈及和按需生产相比更超前却同样可能成真的概念,不得不提及区块链在制造业的影响。(区块链已成为金融服务领域常见的软件机制,用于保证安全的点对点交互,无需第三方中间人介入及验证交易。)在生产领域应用这一技术后,制造企业、供应商及客户可通过区块链网络迅速找到对方,不管是提交1件甚至10万件商品的即时需求,都可建立数字化交易关系。有能力在紧迫交付时间内完成任务的供应商与制造企业(在某些情况下将涉及多个生产者)将共同合作实现客户的需求。
■ 数字化工厂
配备先进生产硬件与软件的全数字化工厂可完成制造流程与足迹的本地化与自动化,从而简化与缩短供应链。这些高度自动化、重度依赖科技的工厂实质上是新型统包工厂范本,可在任何区域迅速投入使用。自动化可减少对于当地技术型劳动力与培训的需求,同时保证质量稳定性。制造企业在向当地工厂转移更多价值的同时,获得更多的灵活性、有能力提供产品定制化服务将成为可能。
为更好地满足中国、非洲以及中东地区客户对于短项目计划周期的要求,美国一家工业设备制造企业拟定并执行了一项生产计划,此计划勾勒了数字化工厂的蓝图。该公司作出这一决策是由于发现有些客户在启动新工厂项目之前只预留了有限的时间,因此通常会购买符合工厂需求的任何市面上销售的工业机器设备,完全不在意品牌。这意味着这些地区的工业设备制造企业只需要将其产品交付周期缩短两周,便可明显提升在当地的市场份额。基于这一发现,该公司执行了一项生产计划:仅在美国生产工业设备的精简框架,而后利用联网计算机辅助设计与数字工程工具,在毗邻其新兴市场客户的定制化中心完成产品的最终装配,如安装附加配件或根据当地客户需求作改动。
通过评估企业收集到的大量有关目前运营情况的数据:各区域市场对于自身产品的需求、客户对于产品的使用情况、库存水平、产品性能(通过B2B领域制造并镶嵌在产品中的传感器获取),以及供应链活动,先进的分析技术可深度开发数字工厂及数字按需制造的潜在价值。这些分析成为反映企业生产与供应链近况及其应对客户需求能力的窗口。故此,这些宝贵的数字信息存储(有时也称为智能可视化为弹性灵活的制造足迹奠定了基础,企业可根据不同区域市场的多变需求作出动态应变的生产决策。
制药行业是积极探索如何利用数据分析与数字化工厂的领先行业之一。已有一家大型制药企业以及众多制药研究团队投身于研究如何运用智能可视化快速建立便捷式制造软件套件,从而提供满足特定区域市场需求的定制化产品。初始的这类制药工厂仍然处在试运行阶段或正在等待监管审批,但制药企业希望这一模式可帮助减少库存、更好地应对当地需求以及缩短工厂停工期。西门子也采纳类似的应用,将智能可视化与模拟软件结合,在为工业客户建立工厂前通过数字化精密调整工厂工程设计、质量控制、产能利用、设备运行、自动化与生产流程。在这一模拟蓝图的帮助下,西门子协助其客户快速建立高成本效益、高效率的按需生产的工厂,根据输出类型、产量及其他地区要求量身打造。
■ 制造创新
数十年来众多生产方式中最新颖的当属3D打印,它将小型或大型零部件及最终产品的生产直接交由工厂完成,不论工厂位于何处,也无需负责产品的运输;应用3D打印—通过建立三维元件层生产产品,因而也称作增材生产—可将制造过程中的附加价值引流至当地制造活动中。因此,实施增材制造计划的汽车制造企业可利用3D打印机在几分钟内根据客户的选择制造出特别设计的车前灯,不再需要耗费数周等待供应商的生产与交付。制造企业因此有能力采取更灵活的方式回应客户需求,也更愿意在产品设计与定制化中大胆尝试。
目前3D打印的工业应用处于相对基础的层面,在探索增材制造将如何影响(并从多方面引领)按需生产的革命方面也只是管中窥豹。在为国际生产工程学院2015年制造工程智能计算大会(Intelligent Computation in Manufacturing Engineering conference)准备的论文中,三位欧洲学者提出一个观点:3D打印将会使云端生产成为必然。在此场景下,供应商将不再生产实物产品,而是向制造企业出售定制化产品数据,随后制造企业利用3D打印在分散式、本地化的工厂中生产产品。
战略框架
制造业风云万变,因此企业需要保持自身的灵活性,迅速应对实时变化,寻找最佳途径建立更加客户导向型、更高效的生产模式。我们认为,所有形态的制造企业都必须重新审视自身的供应链,并决定应如何综合利用下文所述的三大生产战略,从而凭借优势抢占市场高地,从容应对按需生产模式的激烈竞争。
■ 产品定制化
随着批量制造逐渐被定制化生产所取代,众多企业对新型模式持试探性态度。标准产品根据客户实际订单在需求地进行配置,这是产品定制化目前最为保守的形式,产品定制化也因此被认为是开给顾客的空头支票。这一模式涉及的标准产品数量往往有限,且定制化程度较低,例如吉他或手机壳有六种颜色可选,这一现象在很多行业中比较普遍。由于在产品设计上畏手畏脚,企业即使采用这一模式,也不会在按需生产模式中作出更为大胆的创新,因此不可能收获大量的实际利益。
现今对生产者而言更可取的是至少成长为成熟的产品装配中心,提供相对多元化的按需制造,为客户提供广泛的选择,而不仅仅是屈指可数的产品种类。很多企业纷纷以不同有趣的形式将这一理念延伸并融入生产运营中。例如,运动鞋品牌商阿迪达斯近期在德国与美国建立Speedfactory,工厂内的工作完全由机器人执行,可迅速生产运动鞋,并在颜色、鞋带、材质、足托、图案刺绣以及品牌标志等方面提供多种定制化方案。
IOPscience在印度尼西亚发布了一项有关大规模定制化前景的研究,该研究发现在2014年,德国企业设立了470个基于Web的产品装配系统,美国有超过332个,其他国家的企业也设立了大约200个。
然而,这些都不是完全意义上的定制化制造;定制化制造是按需生产模式的终极目标,因为产品的设计不可能完全由个人单独完成。迄今为止,仅有少数类似Local Motors这样进行小批量生产的企业在该意义深远的制造领域中积极探索。要实现这一目标,成为真正意义上的按需制造企业,企业必须全面改革并重新制定其产品生产与设计流程。随着生产日益趋向小批量产出、所需要的运营开支不断减少、效率不断提高,市场上极有可能出现大众市场价格的定制化汽车等产品。
■ 科技驱动型生产
推动按需制造的科技应用包括工厂模拟、传感器、云端程序、物联网以及3D打印。但真正促进这些应用的,是成熟完善且严谨设计的数据系统,这些系统可生成深度分析,从而支持高效的产品定制化、预测客户喜好。在按需生产环境中,企业网络必须具备迅速连接数以万计客户的能力,自动获取客户订单与需求(无论是生产单个产品,还是按时分批交付)。成功捕捉信息后,这些数据必须直接导入生产系统,系统中的自动生产流程便立刻开始生产。
西门子首席执行官Joe Kaeser称,西门子的最终目标是利用客户数据分析— 回应客户需求的预测程序、追踪以往订单及具体喜好、用于维护上市产品的传感器—优化价值链。Kaeser如此说道:“从数据中获得的信息可缩短价值链。生产会变得更快、耗费的成本会更低、灵活性也会更高。企业可大规模地生产某一产品,也可删减价值链中低价值的某些环节。”
■ 精益制造的升级
基本的精益原则在按需制造时代依然具有重要意义,但必须与新兴科技联手以增强精益方法与成效。在新环境下,制造与供应链的灵活性以及模块化产品设计尤为关键,但会对传统精益模式带来的规模经济效益造成一定的威胁。要克服一次性或小批量制造可能产生的低效,数据分析、传感器、机器人技术、联网技术、制造设备(包括但不限于3D打印)以及云端编程等领域应取得突破以加速定制化生产进程与系统发展,从而保障精益概念,即注重质量、效率、工厂绩效与生产力。
在精益领域中,人类在工厂中的地位将不可避免地面对按需制造的考验。传统上,企业采用精益方法来调整与优化流程、规范人员在工厂中的行为与日常活动,最终的目的是杜绝浪费与制程变异。但这一思维将被摒弃,原因在于机器人流程自动化—尤其设计、工程或信息处理等基于软件的活动—能够包容一定程度的低效,这是因为其强大的计算能力可以杜绝轻微浪费或能够更高效工作。换言之,在机器人工厂中,制程变异这个关键的精益指标, 将因为流程自动化迎刃而解。
然而,即使在新的精益模式下,人类在价值链的上游依然发挥极其重要的作用。确切来说,既然按需制造依赖高效生产系统以完成定制化生产,那么设计全新的流程、管理流程的执行以及敦促流程的持续完善必然需要人类智慧,即使越来越多的重复性工作将由人交付给机器人与人工智能。要想在建立按需制造工厂后占据优势地位,制造企业必须能够创造性地运用精益原则,让效率更上一层楼:按需制造环境下的成功不仅包括重复性任务的生产力提高,还体现在产品的灵活性与定制化程度随着制造流程处理订单数量的增加而不断提高。在此模式中,人才资源将专攻如何持续改进、微调与创新定制化生产,以及对于简单或复杂客户需求的灵活快速反应。
结论
现代制造业必然会走向产品定制化,对此企业早已深谙于心。确实,为营造定制化程度更高的制造与服务环境、更好地回应客户需求,企业所倡导的大规模定制化可以说是早期甚至是原始的概念。例如,车主可从某种程度上定制自己的爱车:可自主选择颜色、引擎规格及传动方式等等。这一体系并不是十分完善,但由于科技的步伐赶不上定制化宏图的发展,在没有完全构建新生产模式的情况下,制造企业即可涉足大量定制化领域。
但现在情况已完全不同。科技进步与数字化发展正在兴起并迅速影响整个制造环境,令按需生产模式在几乎所有行业中成为必然趋势;而实际上,各行业已经在执行相关应用。最终,大胆创新的客户将可以自主设计Local Motors甚至丰田、本田及通用这样的大企业生产的汽车,并通过3D打印机制造出来。客户在享受真正产品定制化的成果后将会提出更高的要求,为具备定制化能力的企业带来更多收益,也迫使所有想要继续生存的制造企业培养这方面的能力。对按需制造趋势有所准备的企业终将蓬勃发展。但企业必须现在就行动起来,重新审视自身的长期制造战略,采用优化流程、系统与先进科技,制定生产决策,全面变革与客户互动方式,直面行业中的竞争与挑战。
人工智能赛博物理操作系统
AI-CPS OS
“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。
AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务和数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。
领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:
重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?
重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?
重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?
AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的数字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:
精细:这种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。
智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。
高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。
不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。
边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。
AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:
创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;
对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;
人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。
给决策制定者和商业领袖的建议:
超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;
迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新
评估未来的知识和技能类型;
制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开
发过程中确定更加明晰的标准和最佳实践;
重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临
较高失业风险的人群;
开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。
子曰:“君子和而不同,小人同而不和。” 《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。
如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!
新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
产业智能官 AI-CPS
用“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
长按上方二维码关注微信公众号: AI-CPS,更多信息回复:
新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能金融”、“智能零售”、“智能驾驶”、“智能城市”;新模式:“财富空间”、“工业互联网”、“数据科学家”、“赛博物理系统CPS”、“供应链金融”。
官方网站:AI-CPS.NET
本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!
版权声明:由产业智能官(公众号ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com