【Python】文本分析

依赖库

  • pip install jieba
  • pip install matplotlib
  • pip install wordcloud
  • pip install snownlp

词频统计

# -*- coding: utf-8 -*-

import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt

# 加载自定义分词字典
jieba.load_userdict("news.txt")

# 语料
corpos = "美媒称,鉴于全球石油市场过度供给的情况,中国原油需求下滑是其首要担忧之一。过量生产拉低了石油价格,但是中国过去一年左右的疲弱需求引发了缓慢的回弹。"

seg_list = jieba.cut(corpos)
seg_list2 = jieba.cut(corpos)
text = " ".join(seg_list)

# 词频统计
segStat = {}
for seg in seg_list2:
    if seg in segStat:
        segStat[seg] += 1
    else:
        segStat[seg] = 1
print segStat

# 创建词云
wordcloud = WordCloud(font_path="D:\\PDM\\2.1\\simhei.ttf", background_color="black").generate(text)
plt.imshow(wordcloud)
plt.axis("off")
plt.show()


关键字提取

# -*- coding: utf-8 -*-

import jieba.analyse

# 语料
corpos = "美媒称,鉴于全球石油市场过度供给的情况,中国原油需求下滑是其首要担忧之一。过量生产拉低了石油价格,但是中国过去一年左右的疲弱需求引发了缓慢的回弹。"

# 设置停用词
jieba.analyse.set_stop_words("stop_words.txt")

# 提取关键词
#tags = jieba.analyse.extract_tags(corpos, topK=5)
tags = jieba.analyse.textrank(corpos, topK=5, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v'))
print(",".join(tags))

计算文章相似度

# -*- coding: utf-8 -*-

import jieba.analyse
from snownlp import SnowNLP

corpos = u"美媒称,鉴于全球石油市场过度供给的情况,中国原油需求下滑是其首要担忧之一。过量生产拉低了石油价格,但是中国过去一年左右的疲弱需求引发了缓慢的回弹。"

# 抽取文章关键词
tags = jieba.analyse.extract_tags(corpos, topK=5)
text1 = []
for tag in tags:
    text1.append(tag)
print text1

# 文章列表[[doc1],[doc2],[doc3]...]
text = [text1,[u"文章",u"doc2"],[u"这是doc3"]]
text2 = text1

s = SnowNLP(text)

# 值越大越相似
print s.sim(text2)# [1.8325582915371863, 0, 0]

摘要提取

# -*- coding: utf-8 -*-

from snownlp import SnowNLP

text1 = u"美媒称,鉴于全球石油市场过度供给的情况,中国原油需求下滑是其首要担忧之一。过量生产拉低了石油价格,但是中国过去一年左右的疲弱需求引发了缓慢的回弹。"

s = SnowNLP(text1)

print s.summary(3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值