深入了解Activeloop Deep Memory:提升你的RAG系统性能

引言

Activeloop Deep Memory是一套工具,旨在为你的矢量存储优化性能,提升在大语言模型(LLM)应用中的准确性。检索增强生成(RAG)技术的兴起拓宽了其应用潜力,但在生产中集成RAG仍面临多重挑战。本文将探讨如何利用Activeloop Deep Memory来优化你的RAG系统,介绍其工作原理,解决常见问题,并提供代码示例。

主要内容

RAG系统的挑战

在实施RAG时,准确性、成本和延迟是三个主要考虑因素。尽管OpenAI的Ada模型可以在基础场景中提供满意的结果,但在更高准确性需求下,可能需要更高级的检索技术。这些技术会增加延迟和成本。

Activeloop Deep Memory的解决方案

Activeloop的Deep Memory通过一个微小的神经网络层来增强数据检索的准确性,同时保持成本效益和使用简便性。在不需要复杂技术的情况下,它可以将检索准确率提高至27%。

代码示例

以下是如何创建一个简单RAG系统的完整代码示例:

# 安装所需库
%pip install --upgrade --quiet tiktoken langchain-openai python-dotenv datasets langchain deeplake beautifulsoup4 html2text ragas

# 创建数据集
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import DeepLake
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
import os
import getpass

os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API token: ")
os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass("Enter your ActiveLoop API token: ")

db = DeepLake(
    dataset_path=f"hub://{ORG_ID}/deeplake-docs-deepmemory",
    embedding=OpenAIEmbeddings(),
    runtime={"tensor_db": True},
    token=os.getenv("ACTIVELOOP_TOKEN"),
    read_only=False,
)

# 解析页面链接
from urllib.parse import urljoin
import requests
from bs4 import BeautifulSoup

def get_all_links(url):
    response = requests.get(url)
    if response.status_code != 200:
        print(f"Failed to retrieve the page: {url}")
        return []
    soup = BeautifulSoup(response.content, "html.parser")
    links = [urljoin(url, a["href"]) for a in soup.find_all("a", href=True) if a["href"]]
    return links

base_url = "https://docs.deeplake.ai/en/latest/"
all_links = get_all_links(base_url)

# 加载和转换数据
from langchain_community.document_loaders.async_html import AsyncHtmlLoader

loader = AsyncHtmlLoader(all_links)
docs = loader.load()

from langchain_community.document_transformers import Html2TextTransformer

html2text = Html2TextTransformer()
docs_transformed = html2text.transform_documents(docs)

# 文本分块
from langchain_text_splitters import RecursiveCharacterTextSplitter

chunk_size = 4096
docs_new = []
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size)

for doc in docs_transformed:
    if len(doc.page_content) < chunk_size:
        docs_new.append(doc)
    else:
        docs = text_splitter.create_documents([doc.page_content])
        docs_new.extend(docs)

# 填充矢量存储
docs = db.add_documents(docs_new)

常见问题和解决方案

  • 如何配置API代理服务?
    由于某些地区的网络限制,开发者可能需要使用API代理服务以提高访问的稳定性。

  • 如何解决训练模型的时间长问题?
    可以通过调整训练数据集规模或者使用更高效的计算资源来加快训练速度。

总结和进一步学习资源

Activeloop Deep Memory可以有效提高RAG系统的检索准确性,同时保持简单和高效。建议深入阅读官方文档,探索更多高级功能。

参考资料

  • Activeloop Deep Memory 官方文档
  • LangChain 开发者文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值