目录
- 引言
- 环境准备
- 构建基础RAG系统
- 使用RAGAs进行评估
- LangSmith集成
- 实战示例:端到端评估
- 系统优化策略
- 持续监控与改进
- 总结

在当今的AI应用开发中,检索增强生成(RAG)已成为构建可靠、可控大语言模型应用的关键技术。本文将深入探讨如何使用LangChain、RAGAs和LangSmith来构建、评估和优化RAG系统。
1. 引言
随着大语言模型的迅速发展,如何确保RAG系统的质量和可靠性变得越来越重要。传统的评估方法往往缺乏系统性和全面性,而通过结合LangChain、RAGAs和LangSmith,我们可以构建一个更加完善的评估框架。这不仅能帮助我们理解