深入理解RAG评估:使用LangChain、RAGAs和LangSmith构建高质量检索增强系统

目录

  1. 引言
  2. 环境准备
  3. 构建基础RAG系统
  4. 使用RAGAs进行评估
  5. LangSmith集成
  6. 实战示例:端到端评估
  7. 系统优化策略
  8. 持续监控与改进
  9. 总结

在这里插入图片描述

在当今的AI应用开发中,检索增强生成(RAG)已成为构建可靠、可控大语言模型应用的关键技术。本文将深入探讨如何使用LangChain、RAGAs和LangSmith来构建、评估和优化RAG系统。

1. 引言

随着大语言模型的迅速发展,如何确保RAG系统的质量和可靠性变得越来越重要。传统的评估方法往往缺乏系统性和全面性,而通过结合LangChain、RAGAs和LangSmith,我们可以构建一个更加完善的评估框架。这不仅能帮助我们理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值