如何在SQL问答中处理大型数据库:动态信息提取和查询生成
近年来,使用自然语言处理技术实现对数据库的问答功能变得越来越普遍。然而,当面对大型数据库时,如何有效地处理和生成正确的SQL查询是个巨大的挑战。在这篇文章中,我们将探讨如何动态提取最相关的信息,并将其用于生成有效的SQL查询。
引言
在进行SQL问答时,面对拥有多个表和高基数列的大型数据库,将完整的信息提供给模型是不切实际的。相反,我们需要找到方法,动态地将最相关的信息插入到提示中。本指南演示了识别此类相关信息的方法,并将其输送到查询生成步骤中。
主要内容
1. 识别相关的表子集
在面对多个表时,我们通常不能将所有表的模式信息放入提示中。一种可行的方法是首先识别与用户输入相关的表名,仅包含这些表的模式。可以通过工具调用技术轻松实现这一点。
from langchain_community.utilities import SQLDatabase
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
table_names = "\n".join(db.get_usable_table_names())
system = f"Return the names of ALL the SQL tables that MIGHT be relevant to the user question. \nThe tables are:\n\n{table_names}\n"
2. 识别相关的列值子集
处理高基数(例如包含地址、歌曲名称或艺术家等专有名词)的列时,我们需要确保拼写正确。这可以通过在数据库中创建向量存储以存储所有不同的专有名词,并在每个用户输入时查询该向量存储,将最相关的专有名词注入提示中。
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
vector_db = FAISS.from_texts(proper_nouns, OpenAIEmbeddings())
retriever = vector_db.as_retriever(search_kwargs={"k": 15})
代码示例
以下是一个完整的示例,展示如何结合上面提到的方法,动态选择相关的表并生成适当的SQL查询:
query = full_chain.invoke(
{"question": "What are all the genres of Alanis Morissette songs"}
)
print(query)
db.run(query)
输出:
SELECT DISTINCT "g"."Name"
FROM "Genre" g
JOIN "Track" t ON "g"."GenreId" = "t"."GenreId"
JOIN "Album" a ON "t"."AlbumId" = "a"."AlbumId"
JOIN "Artist" ar ON "a"."ArtistId" = "ar"."ArtistId"
WHERE "ar"."Name" = 'Alanis Morissette'
LIMIT 5;
常见问题和解决方案
问题:拼写错误导致查询失败。
解决方案:使用向量数据库来存储正确的专有名词,并在查询生成前进行拼写校正。
总结和进一步学习资源
通过动态提取和拼写校正技术,我们可以有效地处理大型数据库中的SQL问答场景。如果你想深入学习如何实现这些技术,可以查看LangChain的官方文档以及SQL: Agents指南。
参考资料
- LangChain Documentation # 使用API代理服务提高访问稳定性
- SQLAlchemy官方文档
- FAISS向量数据库指南
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—