[如何在SQL问答中处理大型数据库:动态信息提取和查询生成]

如何在SQL问答中处理大型数据库:动态信息提取和查询生成

近年来,使用自然语言处理技术实现对数据库的问答功能变得越来越普遍。然而,当面对大型数据库时,如何有效地处理和生成正确的SQL查询是个巨大的挑战。在这篇文章中,我们将探讨如何动态提取最相关的信息,并将其用于生成有效的SQL查询。

引言

在进行SQL问答时,面对拥有多个表和高基数列的大型数据库,将完整的信息提供给模型是不切实际的。相反,我们需要找到方法,动态地将最相关的信息插入到提示中。本指南演示了识别此类相关信息的方法,并将其输送到查询生成步骤中。

主要内容

1. 识别相关的表子集

在面对多个表时,我们通常不能将所有表的模式信息放入提示中。一种可行的方法是首先识别与用户输入相关的表名,仅包含这些表的模式。可以通过工具调用技术轻松实现这一点。

from langchain_community.utilities import SQLDatabase

db = SQLDatabase.from_uri("sqlite:///Chinook.db")
table_names = "\n".join(db.get_usable_table_names())
system = f"Return the names of ALL the SQL tables that MIGHT be relevant to the user question. \nThe tables are:\n\n{table_names}\n"

2. 识别相关的列值子集

处理高基数(例如包含地址、歌曲名称或艺术家等专有名词)的列时,我们需要确保拼写正确。这可以通过在数据库中创建向量存储以存储所有不同的专有名词,并在每个用户输入时查询该向量存储,将最相关的专有名词注入提示中。

from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings

vector_db = FAISS.from_texts(proper_nouns, OpenAIEmbeddings())
retriever = vector_db.as_retriever(search_kwargs={"k": 15})

代码示例

以下是一个完整的示例,展示如何结合上面提到的方法,动态选择相关的表并生成适当的SQL查询:

query = full_chain.invoke(
    {"question": "What are all the genres of Alanis Morissette songs"}
)
print(query)

db.run(query)

输出:

SELECT DISTINCT "g"."Name"
FROM "Genre" g
JOIN "Track" t ON "g"."GenreId" = "t"."GenreId"
JOIN "Album" a ON "t"."AlbumId" = "a"."AlbumId"
JOIN "Artist" ar ON "a"."ArtistId" = "ar"."ArtistId"
WHERE "ar"."Name" = 'Alanis Morissette'
LIMIT 5;

常见问题和解决方案

问题:拼写错误导致查询失败。

解决方案:使用向量数据库来存储正确的专有名词,并在查询生成前进行拼写校正。

总结和进一步学习资源

通过动态提取和拼写校正技术,我们可以有效地处理大型数据库中的SQL问答场景。如果你想深入学习如何实现这些技术,可以查看LangChain的官方文档以及SQL: Agents指南

参考资料

  1. LangChain Documentation # 使用API代理服务提高访问稳定性
  2. SQLAlchemy官方文档
  3. FAISS向量数据库指南

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值