简单理解 NP, P, NP-complete和NP-Hard

P是一类可以通过确定性图灵机(以下简称 图灵机)在多项式时间( Polynomial time)内解决的问题集合。
NP是一类可以通过非确定性图灵机(  Non-deterministic Turing Machine)在多项式时间( Polynomial time)内解决的决策问题集合。
PNP的子集,也就是说任何可以被图灵机在多项式时间内解决的问题都可以被非确定性的图灵机解决。
 
接下来说说 NP 里最难得问题  NP-complete
其定义如下,
如果一个决策问题 L 是  NP-complete的,那么L具备以下两个性质:
1) L  是  NP(给定一个解决 NP-complete的方案(solution,感兴趣的读者可以思考一下solution 和 answer的区别),可以很快验证是否可行,但不存在已知高效的方案 。)
2)  NP里的任何问题可以在多项式时间内转为 L。
 
NP-Hard只需要具备 NP-complete的第二个性质,因此 NP-completeNP-Hard的子集。

这四者的关系如下图(假设P!=NP):


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值