第七章-P类问题、NP类问题、NP-hard问题以及NP-complete问题

本文探讨了算法领域的P类问题、NP类问题、NP-hard问题和NP-complete问题。P类问题能在多项式时间内用确定算法解决,而NP类问题能在多项式时间内验证解的正确性。NP-hard问题指任何NP问题都可以归约到它,NP-complete问题既是NP问题也是NP-hard问题。若找到NP-complete问题的多项式解决方案,则P=NP。
摘要由CSDN通过智能技术生成

一.多项式时间

时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。时间复杂度一般分为两种级别:一种是 O(1) , O(log(n)) , O(na) 等,我们把它叫做多项式级的复杂度,因为它的规模n出现在底数的位置;另一种是 O(an)O(n!) 型复杂度,它是非多项式级的,其复杂度计算机往往不能承受。当我们在解决一个问题时,我们选择的算法通常都需要是多项式级的复杂度,非多项式级的复杂度需要的时间太多,往往会超时,除非是数据规模非常小。

时间复杂度 复杂度类别
O(n) 多项式级的复杂度
O(log(n)) 多项式级的复杂度
O(na) 多项式级的复杂度
O(an) 指数级复杂度
O(n!) 阶乘级复杂度

二.P类问题、NP类问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值