题目描述
Mayan puzzle是最近流行起来的一个游戏。游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定的步数内消除所有的方块,消除方块的规则如下:
1 、每步移动可以且仅可以沿横向(即向左或向右)拖动某一方块一格:当拖动这一方块时,如果拖动后到达的位置(以下称目标位置)也有方块,那么这两个方块将交换位置(参见输入输出样例说明中的图6 到图7 );如果目标位置上没有方块,那么被拖动的方块将从原来的竖列中抽出,并从目标位置上掉落(直到不悬空,参见下面图1 和图2);
2 、任一时刻,如果在一横行或者竖列上有连续三个或者三个以上相同颜色的方块,则它们将立即被消除(参见图1 到图3)。
注意:
a) 如果同时有多组方块满足消除条件,几组方块会同时被消除(例如下面图4 ,三个颜色为1 的方块和三个颜色为 2 的方块会同时被消除,最后剩下一个颜色为 2 的方块)。
b) 当出现行和列都满足消除条件且行列共享某个方块时,行和列上满足消除条件的所有方块会被同时消除(例如下面图5 所示的情形,5 个方块会同时被消除)。
3 、方块消除之后,消除位置之上的方块将掉落,掉落后可能会引起新的方块消除。注意:掉落的过程中将不会有方块的消除。
上面图1 到图 3 给出了在棋盘上移动一块方块之后棋盘的变化。棋盘的左下角方块的坐标为(0, 0 ),将位于(3, 3 )的方块向左移动之后,游戏界面从图 1 变成图 2 所示的状态,此时在一竖列上有连续三块颜色为4 的方块,满足消除条件,消除连续3 块颜色为4 的方块后,上方的颜色为3 的方块掉落,形成图 3 所示的局面。
输入输出格式
输入格式:
输入文件mayan.in,共 6 行。
第一行为一个正整数n ,表示要求游戏通关的步数。
接下来的5 行,描述 7*5 的游戏界面。每行若干个整数,每两个整数之间用一个空格隔开,每行以一个0 结束,自下向上表示每竖列方块的颜色编号(颜色不多于10种,从1 开始顺序编号,相同数字表示相同颜色)。
输入数据保证初始棋盘中没有可以消除的方块。
输出格式:
输出文件名为mayan.out。
如果有解决方案,输出 n 行,每行包含 3 个整数x,y,g ,表示一次移动,每两个整数之间用一个空格隔开,其中(x ,y)表示要移动的方块的坐标,g 表示移动的方向,1 表示向右移动,-1表示向左移动。注意:多组解时,按照 x 为第一关健字,y 为第二关健字,1优先于-1 ,给出一组字典序最小的解。游戏界面左下角的坐标为(0 ,0 )。
如果没有解决方案,输出一行,包含一个整数-1。
输入输出样例
输入样例#1:
3
1 0
2 1 0
2 3 4 0
3 1 0
2 4 3 4 0
输出样例#1:
2 1 1
3 1 1
3 0 1
说明
【输入输出样例说明】
按箭头方向的顺序分别为图6 到图11
样例输入的游戏局面如上面第一个图片所示,依次移动的三步是:(2 ,1 )处的方格向右移动,(3,1 )处的方格向右移动,(3 ,0)处的方格向右移动,最后可以将棋盘上所有方块消除。
【数据范围】
对于 30% 的数据,初始棋盘上的方块都在棋盘的最下面一行;
对于 100% 的数据, 0<n≤5 。
noip2011提高组day1第3题
solution
- 感觉自己讲不太清楚,所以推荐一篇吧
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 10
#define maxm 10
const int dx[]={0,0,1,-1};
const int dy[]={1,-1,0,0};
struct Point {
int x,y;
Point(int x=0,int y=0):
x(x),y(y) {}
}ans[maxn];
int N;
int G[maxn][maxm],op[maxn];
bool can[maxn][maxm],vis[maxn][maxm];
void down() {
int tmp[maxm];
for(int i=1;i<=5;i++) {
int cnt=0;
for(int j=1;j<=7;j++) {
if(G[i][j])
tmp[++cnt]=G[i][j];
G[i][j]=0;
}
for(int j=1;j<=cnt;j++)
G[i][j]=tmp[j];
}
return;
}
bool dfs(Point u,int &cnt,int st) {
vis[u.x][u.y]=true;
for(int i=0;i<4;i++) {
Point v=Point(u.x+dx[i],u.y+dy[i]);
if(G[v.x][v.y]&&G[v.x][v.y]==st&&!vis[v.x][v.y]) {
int t=G[v.x][v.y];
G[v.x][v.y]=0;
vis[v.x][v.y]=true;
dfs(v,++cnt,st);
vis[v.x][v.y]=false;
if(cnt<3) G[v.x][v.y]=t;
}
}
vis[u.x][u.y]=0;
return cnt>=3;
}
bool clean() {
memset(can,0,sizeof(can));
bool flag=false;
for(int i=1;i<=5;i++)
for(int j=1;j<=5;j++)
if(G[i][j]&&G[i][j]==G[i][j+1]&&G[i][j]==G[i][j+2]) {
flag=true;
can[i][j]=can[i][j+1]=can[i][j+2]=true;
for(int k=j+3;k<=7&&G[i][k]==G[i][j];k++)
can[i][k]=true;
}
for(int j=1;j<=7;j++)
for(int i=1;i<=3;i++)
if(G[i][j]&&G[i][j]==G[i+1][j]&&G[i][j]==G[i+2][j]) {
flag=true;
can[i][j]=can[i+1][j]=can[i+2][j]=true;
for(int k=i+3;k<=5&&G[k][j]==G[i][j];k++)
can[k][j]=true;
}
if(!flag) return false;
for(int i=1;i<=5;i++)
for(int j=1;j<=7;j++)
if(can[i][j]) G[i][j]=0;
return true;
}
void move_block(Point a,int dir) {
swap(G[a.x+dir][a.y],G[a.x][a.y]);
while(true) {
down();
if(!clean()) break;
}
return;
}
bool check() {
for(int i=1;i<=5;i++)
for(int j=1;j<=5;j++)
if(G[i][j]) return false;
return true;
}
bool Step(int d) {
if(d>N) {
do {
down();
}while(clean());
return check();
}
int G0[maxn][maxm];
bool flag=true;
for(int i=1;i<=5;i++)
for(int j=1;j<=7;j++)
if(G[i][j]!=0) {
flag=false;
if(i<5) {
memcpy(G0,G,sizeof(G));
move_block(ans[d]=Point(i,j),op[d]=1);
if(!Step(d+1)) {
memcpy(G,G0,sizeof(G0));
ans[d]=Point(0,0);
op[d]=0;
} else return true;
}
if(i>1&&G[i-1][j]==0) {
memcpy(G0,G,sizeof(G));
move_block(ans[d]=Point(i,j),op[d]=-1);
if(!Step(d+1)) {
memcpy(G,G0,sizeof(G0));
ans[d]=Point(0,0);
op[d]=0;
} else return true;
}
}
return flag;
}
int main() {
scanf("%d",&N);
for(int i=1;i<=5;i++)
for(int j=1;;j++) {
scanf("%d",&G[i][j]);
if(!G[i][j]) break;
}
if(Step(1)) {
for(int i=1;i<=N;i++)
printf("%d %d %d\n",ans[i].x-1,ans[i].y-1,op[i]);
return 0;
}
printf("-1");
return 0;
}