NOIP 2011 Mayan游戏

题目描述

Mayan puzzle是最近流行起来的一个游戏。游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定的步数内消除所有的方块,消除方块的规则如下:

1 、每步移动可以且仅可以沿横向(即向左或向右)拖动某一方块一格:当拖动这一方块时,如果拖动后到达的位置(以下称目标位置)也有方块,那么这两个方块将交换位置(参见输入输出样例说明中的图6 到图7 );如果目标位置上没有方块,那么被拖动的方块将从原来的竖列中抽出,并从目标位置上掉落(直到不悬空,参见下面图1 和图2);

qwq

2 、任一时刻,如果在一横行或者竖列上有连续三个或者三个以上相同颜色的方块,则它们将立即被消除(参见图1 到图3)。

qwq

注意:

a) 如果同时有多组方块满足消除条件,几组方块会同时被消除(例如下面图4 ,三个颜色为1 的方块和三个颜色为 2 的方块会同时被消除,最后剩下一个颜色为 2 的方块)。

b) 当出现行和列都满足消除条件且行列共享某个方块时,行和列上满足消除条件的所有方块会被同时消除(例如下面图5 所示的情形,5 个方块会同时被消除)。

3 、方块消除之后,消除位置之上的方块将掉落,掉落后可能会引起新的方块消除。注意:掉落的过程中将不会有方块的消除。

上面图1 到图 3 给出了在棋盘上移动一块方块之后棋盘的变化。棋盘的左下角方块的坐标为(0, 0 ),将位于(3, 3 )的方块向左移动之后,游戏界面从图 1 变成图 2 所示的状态,此时在一竖列上有连续三块颜色为4 的方块,满足消除条件,消除连续3 块颜色为4 的方块后,上方的颜色为3 的方块掉落,形成图 3 所示的局面。

输入输出格式

输入格式:

输入文件mayan.in,共 6 行。

第一行为一个正整数n ,表示要求游戏通关的步数。

接下来的5 行,描述 7*5 的游戏界面。每行若干个整数,每两个整数之间用一个空格隔开,每行以一个0 结束,自下向上表示每竖列方块的颜色编号(颜色不多于10种,从1 开始顺序编号,相同数字表示相同颜色)。

输入数据保证初始棋盘中没有可以消除的方块。

输出格式:

输出文件名为mayan.out。

如果有解决方案,输出 n 行,每行包含 3 个整数x,y,g ,表示一次移动,每两个整数之间用一个空格隔开,其中(x ,y)表示要移动的方块的坐标,g 表示移动的方向,1 表示向右移动,-1表示向左移动。注意:多组解时,按照 x 为第一关健字,y 为第二关健字,1优先于-1 ,给出一组字典序最小的解。游戏界面左下角的坐标为(0 ,0 )。

如果没有解决方案,输出一行,包含一个整数-1。

输入输出样例

输入样例#1:
3
1 0
2 1 0
2 3 4 0
3 1 0
2 4 3 4 0
输出样例#1:
2 1 1
3 1 1
3 0 1

说明

【输入输出样例说明】

按箭头方向的顺序分别为图6 到图11

qwq
样例输入的游戏局面如上面第一个图片所示,依次移动的三步是:(2 ,1 )处的方格向右移动,(3,1 )处的方格向右移动,(3 ,0)处的方格向右移动,最后可以将棋盘上所有方块消除。

【数据范围】

对于 30% 的数据,初始棋盘上的方块都在棋盘的最下面一行;

对于 100% 的数据, 0<n5

noip2011提高组day1第3题


solution

  • 感觉自己讲不太清楚,所以推荐一篇

code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 10
#define maxm 10
const int dx[]={0,0,1,-1};
const int dy[]={1,-1,0,0};

struct Point {
    int x,y;
    Point(int x=0,int y=0):
        x(x),y(y) {}
}ans[maxn];

int N;
int G[maxn][maxm],op[maxn];
bool can[maxn][maxm],vis[maxn][maxm];

void down() {
    int tmp[maxm];
    for(int i=1;i<=5;i++) {
        int cnt=0;
        for(int j=1;j<=7;j++) {
            if(G[i][j])
                tmp[++cnt]=G[i][j];
            G[i][j]=0;
        }
        for(int j=1;j<=cnt;j++)
            G[i][j]=tmp[j];
    }
    return;
}

bool dfs(Point u,int &cnt,int st) {
    vis[u.x][u.y]=true;
    for(int i=0;i<4;i++) {
        Point v=Point(u.x+dx[i],u.y+dy[i]);
        if(G[v.x][v.y]&&G[v.x][v.y]==st&&!vis[v.x][v.y]) {
            int t=G[v.x][v.y];
            G[v.x][v.y]=0;
            vis[v.x][v.y]=true;
            dfs(v,++cnt,st);
            vis[v.x][v.y]=false;
            if(cnt<3) G[v.x][v.y]=t;
        }
    }
    vis[u.x][u.y]=0;
    return cnt>=3;
}

bool clean() {
    memset(can,0,sizeof(can));
    bool flag=false;
    for(int i=1;i<=5;i++)
        for(int j=1;j<=5;j++)
            if(G[i][j]&&G[i][j]==G[i][j+1]&&G[i][j]==G[i][j+2]) {
                flag=true;
                can[i][j]=can[i][j+1]=can[i][j+2]=true;
                for(int k=j+3;k<=7&&G[i][k]==G[i][j];k++)
                    can[i][k]=true;
            }
    for(int j=1;j<=7;j++)
        for(int i=1;i<=3;i++)
            if(G[i][j]&&G[i][j]==G[i+1][j]&&G[i][j]==G[i+2][j]) {
                flag=true;
                can[i][j]=can[i+1][j]=can[i+2][j]=true;
                for(int k=i+3;k<=5&&G[k][j]==G[i][j];k++)
                    can[k][j]=true;
            }
    if(!flag) return false;
    for(int i=1;i<=5;i++)
        for(int j=1;j<=7;j++)
            if(can[i][j]) G[i][j]=0;
    return true;
}

void move_block(Point a,int dir) {
    swap(G[a.x+dir][a.y],G[a.x][a.y]);
    while(true) {
        down();
        if(!clean()) break;
    }
    return;
}

bool check() {
    for(int i=1;i<=5;i++)
        for(int j=1;j<=5;j++)
            if(G[i][j]) return false;
    return true;
}

bool Step(int d) {
    if(d>N) {
        do {
            down();
        }while(clean());
        return check();
    }
    int G0[maxn][maxm];
    bool flag=true;
    for(int i=1;i<=5;i++)
        for(int j=1;j<=7;j++)
            if(G[i][j]!=0) {
                flag=false;
                if(i<5) {
                    memcpy(G0,G,sizeof(G));
                    move_block(ans[d]=Point(i,j),op[d]=1);
                    if(!Step(d+1)) {
                        memcpy(G,G0,sizeof(G0));
                        ans[d]=Point(0,0);
                        op[d]=0;
                    } else return true;
                }
                if(i>1&&G[i-1][j]==0) {
                    memcpy(G0,G,sizeof(G));
                    move_block(ans[d]=Point(i,j),op[d]=-1);
                    if(!Step(d+1)) {
                        memcpy(G,G0,sizeof(G0));
                        ans[d]=Point(0,0);
                        op[d]=0;
                    } else return true;
                }
            }
    return flag;
}

int main() {
    scanf("%d",&N);
    for(int i=1;i<=5;i++)
        for(int j=1;;j++) {
            scanf("%d",&G[i][j]);
            if(!G[i][j]) break;
        }
    if(Step(1)) {
        for(int i=1;i<=N;i++)
            printf("%d %d %d\n",ans[i].x-1,ans[i].y-1,op[i]);
        return 0;
    }
    printf("-1");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值