【题目大意】
给出两个字符串,判断他们每一个前缀是否循环同构,循环同构的意思就是,字符串首位相接拼成一个环,两个环通过旋转可以相等。
【题解】
这道题用到了一个神奇的结论,如果S字符串和T字符串循环同构,那么必有S=u+v,T=v+u,而且u和v必有一个是最长匹配。
那么根据这个结论,我们可以用KMP算法在T中找S的最长前缀,也就是每次匹配到i时候的j。那么对于T的前缀和S的后缀,我们直接用哈希来判断是否相等,这样子就可以计算出两个串的前缀是否循环同构了。
#include <cstdio>
#include <cstring>
using namespace std;
const int N=10005,base=233;
typedef long long ll;
int T,nxt[N],ans[N];
char a[N],b[N];
ll hash[2][N],p[N];
ll get_hash(int t,int L,int R){
return hash[t][R]-hash[t][L-1]*p[R-L+1];
}
int check(int t,int m,int n){
if(m==n)return 1;
return get_hash(t,m+1,n)==get_hash(t^1,1,n-m);
}
void kmp(int n,char*a,int m,char*b,int t){
int i,j;
for(nxt[1]=j=0,i=2;i<=n;nxt[i++]=j){
while(j&&a[j+1]!=a[i])j=nxt[j];
if(a[j+1]==a[i])j++;
}
for(j=0,i=1;i<=m;i++){
while(j&&a[j+1]!=b[i])j=nxt[j];
if(a[j+1]==b[i]){
j++;
if(!ans[i])ans[i]=check(t,j,i);
}if(j==n)j=nxt[j];
}
}
int main(){
for(int i=p[0]=1;i<N;i++)p[i]=p[i-1]*base;
while(~scanf(" %s %s",a+1,b+1)){
int n=strlen(a+1);
for(int i=1;i<=n;i++){
ans[i]=0;
hash[0][i]=hash[0][i-1]*base+a[i];
hash[1][i]=hash[1][i-1]*base+b[i];
}
kmp(n,a,n,b,0);
kmp(n,b,n,a,1);
for(int i=1;i<=n;i++)printf("%d",ans[i]);
puts("");
}return 0;
}