MODIS数据批量处理之HDF多栅格文件提取特征信息(未拼接)
对于MOD06_L2、MOD07_L2等Level 2 swath 产品,处理起来比较麻烦。。。。。。
记录一下。。。
目前没尝试:是先把栅格图像拼接后提取所需特征信息还是反着来,哪个效率更高。
python+GDAL批处理方法
参考博文:python+gdal实现MODIS_HDF文件转TIF(可批量) - 知乎 (zhihu.com)
代码:
from osgeo import gdal
import numpy as np
import os
from osgeo import osr
# # gdal打开hdf数据集
# datasets = gdal.Open(r"F:\MOD06_L2\HDF\MOD06_L2.A2015001.0220.061.2017318204746.hdf")
# # 获取hdf中的子数据集
# SubDatasets = datasets.GetSubDatasets()
# # 获取子数据集的个数
# SubDatasetsNum = len(datasets.GetSubDatasets())
# # 输出各子数据集的信息
# print("子数据集一共有{0}个: ".format(SubDatasetsNum))
# for i in range(SubDatasetsNum):
# print(datasets.GetSubDatasets()[i])
# # 获取hdf中的元数据
# Metadata = datasets.GetMetadata()
# # 获取元数据的个数
# MetadataNum = len(Metadata)
# # 输出各子数据集的信息
# print("元数据一共有{0}个: ".format(MetadataNum))
# for key,value in Metadata.items():
# print('{key}:{value}'.format(key = key, value = value))
# DatasetTS = datasets.GetSubDatasets()[20][0]
# DatasetPS = datasets.GetSubDatasets()[21][0]
# RasterTS = gdal.Open(DatasetTS)
# TS = RasterTS.ReadAsArray()
# print(DatasetTS)
# print(RasterTS)
# print(TS.shape)
# 数组保存为tif
def array2raster(TifName, GeoTransform, array):
cols = array.shape[1] # 矩阵列数
rows = array.shape[0] # 矩阵行数
driver = gdal.GetDriverByName('GTiff')
outRaster = driver.Create(TifName, cols, rows, 1, gdal.GDT_Float32)
# 括号中两个0表示起始像元的行列号从(0,0)开始
outRaster.SetGeoTransform(tuple(GeoTransform))
# 获取数据集第一个波段,是从1开始,不是从0开始
outband = outRaster.GetRasterBand(1)
outband.WriteArray(array)
outRasterSRS = osr.SpatialReference()
# 代码4326表示WGS84坐标
outRasterSRS.ImportFromEPSG(4326)
outRaster.SetProjection(outRasterSRS.ExportToWkt())
outband.FlushCache()
# hdf批量转tif
def hdf2tif_batch(hdfFolder):
# 获取文件夹内的文件名
hdfNameList = os.listdir(hdfFolder)
for i in range(len(hdfNameList)):
# 判断当前文件是否为HDF文件
if(os.path.splitext(hdfNameList[i])[1] == ".hdf"):
hdfPath = hdfFolder+"/"+hdfNameList[i]
# gdal打开hdf数据集
datasets = gdal.Open(hdfPath)
# 获取hdf中的元数据
Metadata = datasets.GetMetadata()
# 获取四个角的维度
Latitudes = Metadata["GRIN