此星光明
博士,地图制图和地理信息工程专业,主要涉及Google Earth Engine、PIE-Engine、Planetary Computer、AI Earth、中科星图等云平台的遥感生态云计算研究(多源遥感和机器学习相结合),适用建筑、气象、农业、水利等各个专业云计算。2022年云计算领域博客之星TOP3,2023年CSDN博客之星TOP13,华为云云享专家、MVP,阿里云社区、51CTO博客专家博主。
展开
-
GEE案例:基于Sentinel-2 图像进行火灾前后的分布分析,有效地监测火灾事件
这篇博客介绍了使用Google Earth Engine (GEE)进行火灾监测分析的方法。主要内容包括:定义感兴趣区域(AOI)、设置火灾可视化参数、加载ESA CCI火灾数据集和Sentinel-2卫星数据、通过日期过滤和图像处理技术提取火灾信息。文章详细展示了如何计算火灾发生日期与一年中天数的关系,并在地图上可视化火灾掩膜图层。全部代码提供了完整的技术实现流程,可用于特定区域的火灾事件分析。原创 2025-05-30 08:30:00 · 4 阅读 · 0 评论 -
GEE案例分析:基于Sentinel-2 图像计算了特定月份的平均值下载和导出利用for each和map函数实现
本篇博客介绍了如何使用 Google Earth Engine (GEE) 处理 Sentinel-2 卫星图像,计算特定月份的平均值,并将结果导出到 Google Drive。首先,定义感兴趣区域 (ROI),然后通过云掩膜函数去除云层影响。接着,编写函数计算每月平均图像,并构建包含这些图像的集合。最后,将每个月的平均图像可视化并导出到 Google Drive。该方法适用于环境监测、土地利用变化分析等领域,提供了详细的代码示例和步骤说明。原创 2025-05-25 08:00:00 · 12 阅读 · 0 评论 -
GEE案例:基于MODIS火灾数据,并结合气候和地形变量等多源遥感数据,评估火灾对生态环境的影响并导出矢量数据
一项全球性研究分析了过去10年影响野火分布的因素,使用Google Earth Engine(GEE)获取数据,并通过Python进行分析。研究提出了两种从多光谱卫星图像中提取野火信息的方法,旨在理解全球野火分布的驱动因素。第一种方法通过应用掩码直接提取感兴趣区域的数据,而第二种方法使用六边形瓦片提取特定区域的烧毁像素,提供了更高的灵活性和分类准确性。研究利用GEE创建了包含所有因素的图像,并通过随机森林、自适应增强等机器学习工具对烧毁和未烧毁区域进行点采样分析。研究提取了地形、气候变量(如风速、温度、降水原创 2025-05-23 05:30:00 · 35 阅读 · 0 评论 -
GEE案例:分析和可视化车辆电池(包括电动和普通)由于城市地区地表温度(LST)而面临潜在风险
本存储库提供了一套基于谷歌地球引擎(GEE)的代码,用于分析和可视化城市道路中车辆电池(包括电动和普通)因地表温度(LST)而面临的潜在风险。代码通过处理Landsat 8和9的影像数据,计算地表温度,并结合官方县界和道路网络数据,识别出道路温度可能对电池构成风险的区域。主要功能包括城市边界定义、LST数据处理、道路温度分析、电池风险分类、空间可视化以及数据导出。用户可通过调整日期范围和温度阈值,自定义分析条件,并生成风险地图和CSV文件,便于进一步研究和决策。该工具为城市规划和车辆管理提供了科学依据,帮助原创 2025-05-15 14:28:38 · 384 阅读 · 0 评论 -
GEE案例:基于Sentinel-1 GRD数据的葡萄牙里斯本区域的洪水风险预测
本文分析了一个基于Google Earth Engine (GEE)平台的洪水监测与评估脚本。该脚本通过处理Sentinel-1 SAR数据,分析洪水前后的地表变化,评估受影响区域的洪水范围及其对人口、农田和城市的影响。主要步骤包括:设置日期和SAR参数、加载和预处理数据、计算洪水范围和面积、评估受影响的土地和人口,并将结果可视化。脚本通过一系列图像处理和分析算法,生成洪水掩膜、计算暴露人口数量、受影响的农田和城市面积,最终将结果显示在地图上,并添加图例以便于理解。该脚本为洪水灾害的快速监测和评估提供了有效原创 2025-05-15 17:15:00 · 29 阅读 · 0 评论 -
GEE 案例:计算黄河流域内土壤湿度和降水量的异常情况
本文介绍了如何使用Google Earth Engine (GEE)分析土壤湿度和降水量的异常情况,以识别干旱事件。主要步骤包括:导入流域边界和关键数据集(NASA-USDA Enhanced SMAP土壤湿度数据集和GPM IMERG月度降水数据集),定义研究时间段,处理数据(如单位转换和异常值计算),并绘制异常值时间序列图。通过计算土壤湿度和降水量与多年平均值的偏差,可以在地面数据有限的地区进行水文状况分析,识别持续的负异常时期,这些时期通常与干旱事件相关。原创 2025-05-20 08:00:00 · 391 阅读 · 0 评论 -
GEE案例——利用基于高程、坡度、土地利用、降雨量和水体分布等数据进行洪水风险评估(洪水风险指数)
本文介绍了如何利用 Google Earth Engine (GEE) 进行洪水风险评估。通过整合高程、坡度、土地利用、降雨量和水体分布等数据,构建了一个洪水风险指数模型。具体步骤包括:定义感兴趣区域(AOI)、获取高程和坡度信息、获取土地利用数据、计算降雨量、计算距离水体的距离、归一化各图层数据,并最终加权叠加生成洪水风险指数。此外,还添加了图例和标题以增强地图的可读性。该模型为洪水风险评估提供了有效工具,支持相关决策制定。原创 2025-05-18 16:30:00 · 33 阅读 · 0 评论 -
GEE案例:基于Google Earth Engine的RUSLE土壤侵蚀模型实现与分析(恒河缓冲区)
加载各种输入数据(降水、土壤、地形、植被等)计算RUSLE的五个因子(R、K、LS、C、P)综合计算土壤流失量对结果进行分类和可视化导出计算结果和添加图例RUSLE模型公式为:A = R × K × LS × C × PA: 土壤流失量(t/ha/yr)R: 降雨侵蚀力因子K: 土壤可蚀性因子LS: 地形因子(坡长和坡度)C: 植被覆盖因子P: 水土保持措施因子该代码适用于评估特定区域的土壤侵蚀风险,可用于土地管理和水土保持规划。## 结果!原创 2025-05-19 08:00:00 · 363 阅读 · 0 评论 -
GEE案例:基于sentinel-2影像的Sigmoid函数和线性回归模型对红边光谱区域的反射率进行了模拟和分析(区分地物)
Sigmoid函数的形式为:(f_{max}) 是最大反射率。(k) 是反射率变化的速率。(x_0) 是变化率最大时的中心波长(拐点)。为了使用线性回归,我们将Sigmoid函数进行转换,得到:其中 (y = f(x)),这使得我们可以利用线性代数中的方法来拟合参数模型。接下来,我们定义需要分析的波段和相应的中心波长。需要注意的是,B8波段被排除,因为其带宽较宽且通常低于B7波段。// 波段中心波长(单位:微米)原创 2025-05-10 08:00:00 · 46 阅读 · 0 评论 -
GEE案例:基于1984-2022年结合NDVI数据和时间序列分析,识别和清理煤矿开采区域并将结果可视化并导出
这段代码利用遥感技术,结合NDVI数据和时间序列分析,识别和清理煤矿开采区域,确保数据的准确性和可靠性,最终将结果可视化并导出。该方法适用于环境监测和资源管理等领域。原创 2025-05-08 15:00:00 · 67 阅读 · 0 评论 -
GEE案例:使用高斯过程回归(GPR)方法填补sentienel-2影像在LAI在时间序列中的缺失部分
获取DOYaddDoy函数计算影像日期对应的年份中的第几天(DOY),并将其添加为影像的波段。生成LSP指标函数通过计算目标波段的最小值、最大值和差异(vmin、vmax、vamp),以及双对数模型中的其他参数(如季节开始和结束的DOY)来生成生物季节性参数(LSP)。该函数使用了多个步骤来计算季节的开始、结束以及季节长度等重要参数。双对数模型拟合函数使用通过双对数模型计算得到的参数来对影像集合进行预测,预测值(fitted)是基于影像的DOY和双对数模型的计算结果。原创 2025-05-06 08:00:00 · 244 阅读 · 0 评论 -
GEE案例:基于 Sentinel-2 卫星数据的作物叶绿素指数 (ARVI) 时序分析和可视化
ARVI (Atmospherically Resistant Vegetation Index) 是一种常用的遥感指标,用于评估植被的生理状况和生长情况。它是基于植被反射光谱特征而建立的一种植被指数。ARVI 主要利用植被在红光、蓝光和绿光波段的反射特性来计算。相比于其他植被指数,ARVI 能够更好地抵抗大气散射的影响,因此对于利用卫星遥感数据进行植被监测和分析更加适用。原创 2025-05-04 09:30:00 · 66 阅读 · 0 评论 -
GEE案例:使用伪不变特征(PIF)匹配技术来通过应用该技术到一对在秘鲁森林砍伐事件前后获取的 Planet SkySat 图像,来协调图像之间的辐射特性
本教程演示了如何使用伪不变特征(PIF)匹配技术来通过应用该技术到一对在秘鲁森林砍伐事件前后获取的 Planet SkySat 图像,来协调图像之间的辐射特性。这段代码的功能是通过对比砍伐前后的卫星图像,计算光谱变化并进行波段匹配,以便更好地分析和理解砍伐对环境的影响。通过这些步骤,可以生成较为准确的变化分析结果。原创 2025-05-01 05:00:00 · 117 阅读 · 0 评论 -
GEE 案例:基于 MODIS 数据的作物水分胁迫指数 (CWSI) 分析(时序图表和可视化)
作物水分胁迫指数 (Crop Water Stress Index, CWSI) 是一个重要的遥感指标,可用于监测和评估农作物的水分状况。本文将介绍如何利用 Google Earth Engine 平台,基于 MODIS 卫星数据计算 CWSI,并进行可视化分析。原创 2025-05-04 08:00:00 · 28 阅读 · 0 评论 -
GEE案例:使用 Google Earth Engine (GEE) 来处理 Landsat 8 的图像数据,特别是针对盐度指数SI、盐分浓度指数SI2和NDSI的计算
我们将定义灰度图像的可视化参数,以便在地图上显示。// 定义单波段(灰度)的可视化参数// 示例:近红外波段min: 0, // 示例最小值 - 根据检查工具调整!max: 20000 // 示例最大值 - 根据检查工具调整!我们需要为每个指数定义合适的可视化参数,以便在地图上查看。min: 9000,min: 9000,min: -0.5,max: 0.5,通过以上步骤,我们成功地使用 Google Earth Engine 处理了 Landsat 8 图像,并计算了盐度指数。原创 2025-04-30 08:00:00 · 54 阅读 · 0 评论 -
GEE 案例:利用Google Earth Engine分析了雅加达的犯罪数据,并展示了相关的预测结果
通过以上步骤,我们成功地利用Google Earth Engine分析了雅加达的犯罪数据,并展示了相关的预测结果。原创 2025-04-27 08:00:00 · 42 阅读 · 0 评论 -
GEE案例:基于 Landsat 数据NDVI进行的谐波分析,主要步骤包括区域定义、云层去除、NDVI 计算、谐波模型的创建和拟合(正弦和余弦系数、相位和振幅)
使用定义一个多边形区域,作为分析的目标区域。该代码实现了对 Landsat NDVI 数据的谐波分析,主要步骤包括去云、计算 NDVI、添加时间变量、构建谐波模型、线性回归拟合以及结果可视化。这一过程能够帮助分析植被变化的季节性模式。原创 2025-04-26 08:00:00 · 41 阅读 · 0 评论 -
GEE案例:利用MODIS MCD19A2数据产品,实现对特定区域气溶胶光学厚度(Aerosol Optical Depth, AOD)的月度合成计算和下载
本方案为区域大气环境监测提供标准化技术框架,相关方法可迁移至PM2.5浓度反演、沙尘运移追踪等应用场景。通过GEE的云端协同计算能力,显著降低传统遥感分析的时间成本。原创 2025-04-15 16:10:10 · 499 阅读 · 0 评论 -
GEE案例——基于MODIS LST和CHIRPS数据的指定国家的降水和气温的时序可视化图表和导出
/ 定义研究时期(2024年)// 开始日期// 结束日期// 日期范围日期范围:设置研究的时间段,从2024年1月1日到2024年12月31日。原创 2025-04-19 08:00:00 · 59 阅读 · 0 评论 -
GEE 案例分析:利用GEE云平台处理Landsat卫星影像逐年月批量提取浮游藻类指数(FAI)、叶绿素a浓度等关键生态指标(海洋水色遥感)
建议使用GEE Code Editor直接克隆修改。本方案完整代码库已开源至GEE平台,可通过。原创 2025-04-17 08:00:00 · 126 阅读 · 0 评论 -
GEE案例:使用Savitzky-Golay平滑算法处理Sentinel-1时间序列数据,并可视化结果
总的来说,这段代码演示了如何在Google Earth Engine上使用Savitzky-Golay平滑算法处理Sentinel-1时间序列数据,并可视化结果。原创 2025-04-08 11:02:02 · 390 阅读 · 0 评论 -
GEE案例:主要涉及Sentinel-2和MODIS数据集的图像过滤、处理和可视化(时序影像的构建,主要用于物候检测和分析)
##函数是一个强大的图像分割工具,适用于各种遥感和计算机视觉应用。通过调整这些参数,用户可以控制分割的精度和超像素的形状,以满足不同的应用需求。函数是 Google Earth Engine 中用于图像处理的重要工具,主要用于对图像中的连通组件进行聚合或简化。它可以通过指定的聚合器对图像中相连的像素进行处理,从而生成新的图像。函数是一个强大的工具,可以帮助用户在图像处理中对连通区域进行有效的聚合和分析。通过合理选择聚合器和标记波段,用户可以实现多种图像处理任务。首先,我们定义一个多边形区域X。原创 2025-04-13 08:00:00 · 69 阅读 · 0 评论 -
GEE案例分析:使用不同时期的Landsat C02和MODIS影像的时空数据融合(可用于影像补缺和增加高分辨率影像)
Belle =这里,我们首先定义了两个图像集合:Landsat 8和MODIS。接着,我们定义了一个多边形(Belle),用于后续的图像处理。通过这段代码,我们可以看到如何使用Google Earth Engine进行遥感图像的处理和分析。我们学习了如何过滤、选择、分割和可视化图像数据,为后续的研究和应用打下了基础。希望这篇博客能帮助你更好地理解GEE的使用!原创 2025-04-11 08:00:00 · 101 阅读 · 0 评论 -
GEE 案例分析:Sentinel-2和MODIS数据的影像融合(影像的弥补和时序影像的增加)
首先,我们定义一个多边形区域X,用于后续的图像处理。var X =通过这段代码,我们可以看到如何使用Google Earth Engine进行遥感图像的处理和分析。我们学习了如何过滤、选择、分割和可视化图像数据,为后续的研究和应用打下了基础。希望这篇博客能帮助你更好地理解GEE的使用!原创 2025-04-09 03:00:00 · 175 阅读 · 0 评论 -
GEE案例:Landsat影像进行逐年月浮游藻类指数(FAI)叶绿素浓度chla指数的计算和统计下载
首先,我们需要定义一个感兴趣区域(ROI),即我们要分析的区域。})]);接下来,我们定义了一个用于计算FAI的函数。FAI(Floating Algae Index)是一种用于检测水体中浮游藻类的指数。我们还将计算NDVI(归一化植被指数)和基于NDVI的叶绿素a浓度(CHLA)。为了去除影像中的云和云阴影,我们定义了两个云掩膜函数,分别适用于Landsat 5和Landsat 8影像。原创 2025-04-05 08:00:00 · 107 阅读 · 0 评论 -
GEE统计分析:计算特定区域的NDVI(归一化植被指数)、土地分类和LST(地表温度数据),并进行区域统计分析和导出
首先,我们需要定义一个感兴趣的地理位置。// 边界城市在这段代码中,我们使用定义了一个点,并通过方法从城市边界数据集中筛选出与该点相交的城市边界。接下来,我们需要定义我们感兴趣的时间范围。通过以上步骤,我们成功地使用Google Earth Engine分析了特定区域的土地覆盖、NDVI和LST,并计算了相关的区域统计信息。这一过程展示了GEE在环境监测和资源管理中的强大能力。希望这篇博客对您在使用GEE时有所帮助!如果您有任何问题或建议,欢迎在评论区留言。原创 2025-04-04 08:00:00 · 184 阅读 · 0 评论 -
GEE 案例分析:利用Landsat数据进行FAI、NDVI及CHLA分析并统计平均值(巢湖为例)
浮游藻类指数(FAI)、归一化植被指数(NDVI)及叶绿素a(CHLA)是水体环境监测的重要指标。本文利用Google Earth Engine(GEE)平台,基于Landsat 5和Landsat 8数据,进行水体藻类及植被监测。原创 2025-04-02 08:00:00 · 518 阅读 · 0 评论 -
GEE案例:利用ESRI的全球土地覆盖数据集和其他矢量数据,进行森林、道路等地物的分析(进行纯净森林的提取过程)
在本博客中,我们将逐步解析一段使用Google Earth Engine(GEE)进行土地覆盖分类和水体提取的JavaScript代码。该代码利用ESRI的全球土地覆盖数据集和其他矢量数据,进行森林、道路等地物的分析。原创 2025-03-31 08:00:00 · 299 阅读 · 0 评论 -
GEE案例:基于ECMWF/ERA5_LAND/MONTHLY_AGGR数据分析某个特定地区(葡萄牙)的1950-2024年土地表面温度(LST)变化和时序可视化结果
首先,我们定义一个点位置,该位置将是我们分析的中心。// 将国家边界添加到地图// 中心化地图通过上述步骤,我们成功地分析了某个特定区域的土地表面温度变化,并生成了相应的时间序列图表和图例。这一过程展示了如何利用 Google Earth Engine 强大的数据处理和可视化能力进行环境监测和分析。如果你对代码或过程有任何疑问,请随时留言讨论!// 定义分析区域// 将国家边界添加到地图// 中心化地图// 设置时间范围// 获取温度数据// 创建时间序列集合}))原创 2025-03-28 08:00:00 · 104 阅读 · 0 评论 -
GEE案例:基于欧空局JRC/GHSL/P2023A/GHS_BUILT_C全球人类定居数据进行统计和分类(西班牙为例)
/ 将国家边界添加到地图// 中心化地图'开放空间,低植被表面', '开放空间,中植被表面', '开放空间,高植被表面','开放空间,水面', '开放空间,道路表面', '建筑空间,住宅,建筑高度 <= 3m','建筑空间,住宅,3m < 建筑高度 <= 6m', '建筑空间,住宅,6m < 建筑高度 <= 15m','建筑空间,住宅,15m < 建筑高度 <= 30m', '建筑空间,住宅,建筑高度 > 30m',原创 2025-03-27 08:00:00 · 47 阅读 · 0 评论 -
GEE案例——利用ERA5-Land数据进行可视化分析和不同气候面积统计以及NDVI的时序变化情况
*/通过这段代码,我们展示了如何使用 Google Earth Engine 进行气候数据的分类分析以及 NDVI 的时间序列分析。这些步骤为理解气候变化及其对植被的影响提供了有力的工具。希望这篇博客能够帮助你更好地掌握这些技术!原创 2025-03-26 08:00:00 · 91 阅读 · 0 评论 -
GEE案例:基于Landsat8数据求取NDSI积雪的面积(已经根据NDWI去除了水体范围)
/ 西藏某矩形研究区(坐标可替换)// 地图中心定位---### 2.2 云层处理技术**Landsat 8云掩膜函数**:// 利用QA_PIXEL波段识别云与阴影// 位掩码操作// 辐射定标处理// 光学波段定标// 热红外定标// 应用云掩膜技术要点QA_PIXEL波段位掩码组合(Bits 0-4对应填充值/云/卷云/阴影)地表反射率转换公式来自USGS官方文档。原创 2025-03-24 08:00:00 · 118 阅读 · 0 评论 -
GEE案例:基于 Sentinel-2 数据计算 FAI、NDVI、CHLA 和 NDCI 指数(叶绿素和海藻遥感反演)并进行统计(平均值和标准差等)和下载
在遥感技术中,浮游藻类指数(FAI)、归一化植被指数(NDVI)、叶绿素 a(CHLA)浓度以及归一化差异叶绿素指数(NDCI)是监测水体和植被状况的重要指标。本文将介绍如何使用 Google Earth Engine(GEE)平台,基于 Sentinel-2 数据,计算这些指数,并进行逐月统计分析。。原创 2025-03-22 08:00:00 · 251 阅读 · 0 评论 -
GEE案例:分析土壤侵蚀并计算土壤流失。通过不同的因素(如降水量、土壤类型、地形、植被覆盖等),估算一个区域内的土壤流失
首先,我们定义一个包含多个点的几何区域,接着,我们使用这个区域来从国家级边界数据集中选择相关的国家。然后,我们将这个区域的地图加载到界面中,设置为中心并进行缩放。// 将国家边界图层添加到地图// 聚焦地图至定义的几何区域在这个步骤中,我们定义了分析的时间范围,即从2017年1月1日到2018年1月1日。这个时间范围将用于获取降水量、土壤类型、地形、植被覆盖等数据。原创 2025-03-18 01:30:00 · 206 阅读 · 0 评论 -
GEE案例——基于landsat 8的计算特定区域(太湖和鄱阳湖)的 FUI(遥感水色指数)监测和可视化分析
FUI(遥感水色指数,Fluorescence Utilization Index)是一种用于评估水体健康和生态状况的遥感指标。它通过分析水体的光谱特征,特别是水体中植物的光合作用和荧光信号,来提供有关水体质量的信息。原创 2025-03-06 17:30:41 · 609 阅读 · 0 评论 -
GEE案例:分析了2023年指定区域的夜间灯光数据和Landsat 8卫星影像
首先,我们需要定义一个感兴趣的区域。// 边界城市在这段代码中,我们使用定义了一个点,并通过方法从城市边界数据集中筛选出与该点相交的区域。通过以上步骤,我们成功地使用Google Earth Engine分析了2023年指定区域的夜间灯光数据和Landsat 8卫星影像。这一过程展示了GEE在地理空间数据分析中的强大能力。希望这篇博客对您在使用GEE时有所帮助!如果您有任何问题或建议,欢迎在评论区留言。原创 2025-03-05 08:00:00 · 220 阅读 · 0 评论 -
GEE案例分析:通过地形坡度、植被覆盖、土壤湿度和降水量等因素,评估特定区域的滑坡风险
// 定义感兴趣区域var AOI =region =] */在这段代码中,我们定义了一个点和一个多边形作为我们的研究区域。// 0. 时间和日期通过以上步骤,我们成功地使用Google Earth Engine进行滑坡易发性分析。这一过程展示了GEE在地理空间数据分析中的强大能力。希望这篇博客对您在使用GEE时有所帮助!如果您有任何问题或建议,欢迎在评论区留言。原创 2025-03-04 08:00:00 · 308 阅读 · 0 评论 -
GEE 案例:在 Google Earth Engine 中估算并可视化了土壤流失计算水土流失方程
我们可以选择基于流域的边界进行分析。// Mahi 流域print('子流域数量:', main.size());Map.addLayer(main, {}, '研究区域');原创 2025-02-28 08:00:00 · 83 阅读 · 0 评论 -
GEE案例:通过计算计算粒径指数(Grain Size Index, GSI)来评估土壤和植被的状况
粒径指数(GSI)是一种用于评估土壤和植被状况的重要指标。它主要通过分析遥感图像中的不同波段反射率来计算,特别是红色、绿色和蓝色波段。GSI的计算可以帮助我们理解土壤的物理特性和植被覆盖情况,进而为土地管理、农业生产和生态监测提供科学依据。粒径指数(GSI)作为一种有效的遥感指标,为土壤和植被的研究提供了重要的数据支持。通过对GSI的分析,我们能够更好地理解土地的使用状况及其生态功能,从而为可持续发展和环境保护提供科学依据。/// 定义感兴趣区域var aoi =] */原创 2025-02-28 08:00:00 · 98 阅读 · 0 评论 -
GEE 案例分析——分析特定区域内的甲烷ch4浓度变化及其趋势(时序图表),为环境监测和管理提供依据
定义区域和时间范围创建一个几何点,表示城市的位置。设置分析的时间范围,从2020年到2024年。加载和处理数据从 Sentinel-5P 卫星获取甲烷数据,并根据城市边界和时间范围进行过滤。创建年份和月份的列表,以便进行逐月分析。计算月均值计算每个月的甲烷平均值,并生成一个图像集合。可视化甲烷水平绘制甲烷浓度的时间序列图,展示随时间变化的趋势。计算异常值计算每个月的甲烷异常值(与整体平均值的差异),并绘制异常值的柱状图。筛选正异常值过滤出正的甲烷异常值,并绘制其时间序列图。导出数据。原创 2025-02-12 02:00:00 · 102 阅读 · 0 评论