● 203.移除链表元素
题目描述
给你二叉搜索树的根节点 root
,同时给定最小边界low
和最大边界 high
。通过修剪二叉搜索树,使得所有节点的值在[low, high]
中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
示例 1:
输入:root = [1,0,2], low = 1, high = 2
输出:[1,null,2]
示例 2:
输入:root = [3,0,4,null,2,null,null,1], low = 1, high = 3
输出:[3,2,null,1]
提示:
- 树中节点数在范围
[1, 10<sup>4</sup>]
内 0 <= Node.val <= 10<sup>4</sup>
- 树中每个节点的值都是 唯一 的
- 题目数据保证输入是一棵有效的二叉搜索树
0 <= low <= high <= 10<sup>4</sup>
解题思路
迭代法
返回值和函数参数
TreeNode* trimBST(TreeNode* root, int low, int high)
终止条件
if(root == nullptr) return nullptr;
单次循环的逻辑
if(root->val < low)
return trimBST(root->right,low,high);
else if( root->val > high)
{
return trimBST(root->left,low,high);
}
root->right = trimBST(root->right,low,high);
root->left = trimBST(root->left,low,high);
return root;
代码整合
正确版本
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if(root == nullptr)
return nullptr;
if(root->val < low)
return trimBST(root->right,low,high);
else if( root->val > high)
{
return trimBST(root->left,low,high);
}
root->right = trimBST(root->right,low,high);
root->left = trimBST(root->left,low,high);
return root;
}
};
错误版本,考虑的太多了 删除多余节点的空间 有bug
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if(root == nullptr) return nullptr;
if(root->val< low && root->right)
{
if(root->right&& root->right->val>= low)
{
TreeNode * node = root->right;
delete root;
return node;
}
else
{
delete root;
return nullptr;
}
}
else if(root->val>high && root->left)
{
if(root->left&&root->left->val <= high)
{
auto node = root->left;
delete root;
return node;
}
else
{
delete root;
return nullptr;
}
}
else if( (root->val <low|| root->val> high)&& root->left == nullptr && root->right == nullptr )
{
delete root ;
return nullptr;
}
if(root->val>=low && root->val<= high)
{
root->left = trimBST(root->left,low,high);
root->right = trimBST(root->right,low,high);
return root;
}
else
{
return trimBST(root,low,high);
}
}
};
● 108.将有序数组转换为二叉搜索树
题目描述
给你一个整数数组 nums
,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
示例 1:
输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:
示例 2:
输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。
提示:
1 <= nums.length <= 10<sup>4</sup>
-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup>
nums
按 严格递增 顺序排列
解题思路
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
if(nums.size() == 0 ) return nullptr;
int mid = nums.size()/2;
int midval = nums[mid];
TreeNode * root = new TreeNode(midval);
if(nums.size()==1)return root;
// 分割数组 left
vector<int> left(nums.begin(),nums.begin()+mid);
// 分割数组 right
vector<int> right(nums.begin()+mid+1,nums.end());
root->left = sortedArrayToBST(left);
root->right = sortedArrayToBST(right);
return root;
}
};
● 538.把二叉搜索树转换为累加树
题目描述
给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node
的新值等于原树中大于或等于 node.val
的值之和。
提醒一下,二叉搜索树满足下列约束条件:
- 节点的左子树仅包含键 小于 节点键的节点。
- 节点的右子树仅包含键 大于 节点键的节点。
- 左右子树也必须是二叉搜索树。
**注意:**本题和 1038: https://leetcode-cn.com/problems/binary-search-tree-to-greater-sum-tree/ 相同
示例 1:
输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
示例 2:
输入:root = [0,null,1]
输出:[1,null,1]
示例 3:
输入:root = [1,0,2]
输出:[3,3,2]
示例 4:
输入:root = [3,2,4,1]
输出:[7,9,4,10]
提示:
- 树中的节点数介于
0
和10<sup>4</sup>
之间。 - 每个节点的值介于
-10<sup>4</sup>
和10<sup>4</sup>
之间。 - 树中的所有值 互不相同 。
- 给定的树为二叉搜索树。
解题思路
一看到累加树,相信很多小伙伴都会疑惑:如何累加?遇到一个节点,然后再遍历其他节点累加?怎么一想这么麻烦呢。
然后再发现这是一棵二叉搜索树,二叉搜索树啊,这是有序的啊。
那么有序的元素如何求累加呢?
其实这就是一棵树,大家可能看起来有点别扭,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13],是不是感觉这就简单了。
为什么变成数组就是感觉简单了呢?
因为数组大家都知道怎么遍历啊,从后向前,挨个累加就完事了,这换成了二叉搜索树,看起来就别扭了一些是不是。
那么知道如何遍历这个二叉树,也就迎刃而解了,从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了。
本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。
pre指针的使用技巧,
- 递归函数参数以及返回值
这里很明确了,不需要递归函数的返回值做什么操作了,要遍历整棵树。
同时需要定义一个全局变量pre,用来保存cur节点的前一个节点的数值,定义为int型就可以了。
代码如下:
int pre = 0; // 记录前一个节点的数值
void traversal(TreeNode* cur)
- 确定终止条件
遇空就终止。
if (cur == NULL) return;
- 确定单层递归的逻辑
注意要右中左来遍历二叉树, 中节点的处理逻辑就是让cur的数值加上前一个节点的数值。
代码如下:
traversal(cur->right); // 右
cur->val += pre; // 中
pre = cur->val;
traversal(cur->left); // 左
class Solution {
private:
int pre = 0; // 记录前一个节点的数值
void traversal(TreeNode* cur) { // 右中左遍历
if (cur == NULL) return;
traversal(cur->right);
cur->val += pre;
pre = cur->val;
traversal(cur->left);
}
public:
TreeNode* convertBST(TreeNode* root) {
pre = 0;
traversal(root);
return root;
}
};