刷题记录|Day23● 669. 修剪二叉搜索树 ● 108.将有序数组转换为二叉搜索树 ● 538.把二叉搜索树转换为累加树

● 203.移除链表元素

题目描述

给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案

所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。

示例 1:

输入:root = [1,0,2], low = 1, high = 2
输出:[1,null,2]

示例 2:

输入:root = [3,0,4,null,2,null,null,1], low = 1, high = 3
输出:[3,2,null,1]

提示:

  • 树中节点数在范围 [1, 10<sup>4</sup>]
  • 0 <= Node.val <= 10<sup>4</sup>
  • 树中每个节点的值都是 唯一
  • 题目数据保证输入是一棵有效的二叉搜索树
  • 0 <= low <= high <= 10<sup>4</sup>

解题思路

迭代法

返回值和函数参数
TreeNode* trimBST(TreeNode* root, int low, int high)
终止条件
if(root == nullptr) return nullptr;
单次循环的逻辑
if(root->val < low)
            return trimBST(root->right,low,high);
        else if( root->val > high)
        {
            return trimBST(root->left,low,high);
        }

        root->right = trimBST(root->right,low,high);
        root->left = trimBST(root->left,low,high);
        return root;
代码整合
正确版本
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if(root == nullptr)
            return nullptr;
        if(root->val < low)
            return trimBST(root->right,low,high);
        else if( root->val > high)
        {
            return trimBST(root->left,low,high);
        }

        root->right = trimBST(root->right,low,high);
        root->left = trimBST(root->left,low,high);
        return root;
    }
};
错误版本,考虑的太多了 删除多余节点的空间 有bug
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {

        if(root == nullptr) return nullptr;

        if(root->val< low && root->right)
        {
            if(root->right&& root->right->val>= low)
            {
                TreeNode * node = root->right;
                delete root;
                return node;
            }
            else 
            {
                delete root;
                return nullptr;
            }
        }

        else if(root->val>high && root->left)
        {
            if(root->left&&root->left->val <= high)
            {
                auto node = root->left;
                delete root;
                return node;
            }
            else 
            {
                delete root;
                return nullptr;
            }
        }
        else if( (root->val <low|| root->val> high)&& root->left == nullptr && root->right == nullptr )
        {
            delete root ;
            return nullptr;
        }
        if(root->val>=low && root->val<= high)
        {
         root->left = trimBST(root->left,low,high);
         root->right = trimBST(root->right,low,high);        
            return root;
        }
        else 
        {
            return trimBST(root,low,high);
        }

 

    }
};

● 108.将有序数组转换为二叉搜索树

题目描述

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。

高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。

示例 1:

输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:


示例 2:

输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。

提示:

  • 1 <= nums.length <= 10<sup>4</sup>
  • -10<sup>4</sup> <= nums[i] <= 10<sup>4</sup>
  • nums严格递增 顺序排列

解题思路

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        if(nums.size() == 0 ) return nullptr;

        int mid = nums.size()/2;
        int midval = nums[mid];

        TreeNode * root = new TreeNode(midval);
        if(nums.size()==1)return root;



        // 分割数组 left
        vector<int> left(nums.begin(),nums.begin()+mid);
        // 分割数组 right
        vector<int> right(nums.begin()+mid+1,nums.end());


        root->left = sortedArrayToBST(left);
        root->right = sortedArrayToBST(right);
        return root;

    }
};

● 538.把二叉搜索树转换为累加树

题目描述

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

  • 节点的左子树仅包含键 小于 节点键的节点。
  • 节点的右子树仅包含键 大于 节点键的节点。
  • 左右子树也必须是二叉搜索树。

**注意:**本题和 1038: https://leetcode-cn.com/problems/binary-search-tree-to-greater-sum-tree/ 相同

示例 1:

输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

输入:root = [0,null,1]
输出:[1,null,1]

示例 3:

输入:root = [1,0,2]
输出:[3,3,2]

示例 4:

输入:root = [3,2,4,1]
输出:[7,9,4,10]

提示:

  • 树中的节点数介于 010<sup>4</sup> 之间。
  • 每个节点的值介于 -10<sup>4</sup>10<sup>4</sup> 之间。
  • 树中的所有值 互不相同
  • 给定的树为二叉搜索树。

解题思路

一看到累加树,相信很多小伙伴都会疑惑:如何累加?遇到一个节点,然后再遍历其他节点累加?怎么一想这么麻烦呢。

然后再发现这是一棵二叉搜索树,二叉搜索树啊,这是有序的啊。

那么有序的元素如何求累加呢?

其实这就是一棵树,大家可能看起来有点别扭,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13],是不是感觉这就简单了。

为什么变成数组就是感觉简单了呢?

因为数组大家都知道怎么遍历啊,从后向前,挨个累加就完事了,这换成了二叉搜索树,看起来就别扭了一些是不是。

那么知道如何遍历这个二叉树,也就迎刃而解了,从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了

本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。

pre指针的使用技巧,

  • 递归函数参数以及返回值

    这里很明确了,不需要递归函数的返回值做什么操作了,要遍历整棵树。

    同时需要定义一个全局变量pre,用来保存cur节点的前一个节点的数值,定义为int型就可以了。

    代码如下:
int pre = 0; // 记录前一个节点的数值
void traversal(TreeNode* cur)

  • 确定终止条件

    遇空就终止。
if (cur == NULL) return;

  • 确定单层递归的逻辑

    注意要右中左来遍历二叉树, 中节点的处理逻辑就是让cur的数值加上前一个节点的数值。

    代码如下:
traversal(cur->right);  // 右
cur->val += pre;        // 中
pre = cur->val;
traversal(cur->left);   // 左
class Solution {
private:
    int pre = 0; // 记录前一个节点的数值
    void traversal(TreeNode* cur) { // 右中左遍历
        if (cur == NULL) return;
        traversal(cur->right);
        cur->val += pre;
        pre = cur->val;
        traversal(cur->left);
    }
public:
    TreeNode* convertBST(TreeNode* root) {
        pre = 0;
        traversal(root);
        return root;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值