day21 | 669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树

代码随想录算法训练营第21天|669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树

Leetcode 669. 修剪二叉搜索树
题目链接:https://leetcode.cn/problems/trim-a-binary-search-tree/description/
思路:

1、递归

2、迭代

题目描述:

给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案

所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。

示例 1:

img

输入:root = [1,0,2], low = 1, high = 2
输出:[1,null,2]

示例 2:

img

输入:root = [3,0,4,null,2,null,null,1], low = 1, high = 3
输出:[3,2,null,1]
代码1:递归
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode trimBST(TreeNode root, int low, int high) {
        return changeTree(root,low,high);
    }
    public TreeNode changeTree(TreeNode root , int low ,int high){
        // 确定终止条件
        if(root == null) return null;
        // 确定单层递归逻辑
        if(root.val<low){
            // 往右遍历
            return changeTree(root.right,low,high); 
        }
        if(root.val>high){
            //往左遍历
            return changeTree(root.left,low,high);
        }
        //root在【low,high】之内
        root.left = changeTree(root.left,low,high);
        root.right = changeTree(root.right,low,high);
        return root; 
    }
}
Leetcode 108.将有序数组转换为二叉搜索树
题目链接:https://leetcode.cn/problems/convert-sorted-array-to-binary-search-tree/description/
思路:

1、递归

将中间节点作为树的根节点,因为数组是有序的,左边为树的左子树,右边为树的右子树,最后返回树

2、迭代

题目描述:

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵

平衡

二叉搜索树。

示例 1:

img

输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:

示例 2:

img

输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。
代码1:递归
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        TreeNode root = SerchTreeBlance(nums , 0 , nums.length - 1);
        return root;
    }
    // 递归法
    // 确定参数和返回值
    public TreeNode SerchTreeBlance(int[] nums , int left , int right){
        if(left > right) return null;
        int mid = (left + right)/2;
        // 左闭右闭区间
        TreeNode root = new TreeNode(nums[mid]);
        // 如果数长度为偶数,中间位置有两个元素,取靠左的元素
        root.left = SerchTreeBlance(nums,left , mid -1);
        root.right = SerchTreeBlance(nums,mid+1,right);
        return root;
    }
}
Leetcode 538.把二叉搜索树转换为累加树
题目链接:https://leetcode.cn/problems/convert-bst-to-greater-tree/description/
思路:

1、递归

通过设置双指针,cur为遍历的当前节点,pre为当前节点的前一个节点,通过cur.val += pre;进行和的累加, pre =cur;进行节点的移动

2、迭代

题目描述:

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

  • 节点的左子树仅包含键 小于 节点键的节点。
  • 节点的右子树仅包含键 大于 节点键的节点。
  • 左右子树也必须是二叉搜索树。

**注意:**本题和 1038: https://leetcode-cn.com/problems/binary-search-tree-to-greater-sum-tree/ 相同

示例 1:

img

输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

输入:root = [0,null,1]
输出:[1,null,1]

示例 3:

输入:root = [1,0,2]
输出:[3,3,2]

示例 4:

输入:root = [3,2,4,1]
输出:[7,9,4,10]

提示:

  • 树中的节点数介于 0104 之间。
  • 每个节点的值介于 -104104 之间。
  • 树中的所有值 互不相同
  • 给定的树为二叉搜索树。
代码1:递归
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    int sum;
    public TreeNode convertBST(TreeNode root) {
        // 右中左
        sum = 0;
        changeTree(root);
        return root;
    }
    // 确定参数和返回值
    public void changeTree(TreeNode root){
        // 采用双指针
        // 终止条件
        if(root == null) return;
        // 右
        changeTree(root.right);
        // 中
        sum +=root.val;
        root.val = sum;
        // 左
        changeTree(root.left);
       
    }
}

hangeTree(TreeNode root){
// 采用双指针
// 终止条件
if(root == null) return;
// 右
changeTree(root.right);
// 中
sum +=root.val;
root.val = sum;
// 左
changeTree(root.left);

}

}


###### 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值