李宏毅深度学习HW2 收入预测 (logistic regression)

这篇博客详细介绍了如何使用深度学习进行二分类任务,预测个人收入是否超过50k。内容涵盖数据预处理、特征扩展、数据读取、归一化、参数设定、训练过程以及训练效果分析。作者探讨了非数值特征的处理方法,如将类别特征扩展为二值特征,并比较了不同归一化方法对模型性能的影响。在训练过程中,采用了mini-batch和动态调整学习率的方法。
摘要由CSDN通过智能技术生成

1.任务内容

  • 任务:根据一个人的年龄,工作类型,教育程度等18个特征做一个二分分类——判断其收入是否大于50k。train.csv文件打开如下:

  • 训练集(X_train文件中):32561个人,106(扩展后,见2.1)个特征。

这里首先弄清了一个概念——回归​:在我们认知(测量)这个世界的时候,我们并不能得到这个世界的全部信息(真值),只能得到这个世界展现出的可被我们观测的部分信息。那么,如果我们想得到世界的真值,就只能通过尽可能多的信息,从而使得我们的认识,无限接近(回归)真值

简单来说,就将现有的数据向假设的模型拟合逼近。

2.实现代码详解

实例代码构建了一层的神经网络,输出层神经元为logistic unit,使用交叉熵损失函数。

1.数据预处理

首先这个任务有个很值得考虑的问题是,如何处理那些非数字的数据。一个似乎可行的办法是,给每类一个数字标记,如教育程度(小学,中学,大学)可以对应(1,2,3),这个方法的问题在于,会给算法暗示相邻数字对应的种类间存在某种联系,而实际上这种联系是不存在的。

另一种方法是作业使用的,把一个特征扩展到多个特征,教育程度扩展成小学,中学,大学等,每个特征用(0,1)标记。经此处理后,特征便从18维度被扩展到了106维,非数的特征也变为了数字。

还有一个处理数据的思路,把fnlwgt(final analysis weights)按区间扩展到多个特征,同样用&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值