机器模型之线性模型(一)

本文深入探讨线性模型的本质及应用,包括线性回归、逻辑回归的区别,以及如何通过属性的线性组合进行预测。文章详细解释了线性模型在机器学习中的作用,如PCA降维、LDA线性判别和SVM的基本形式,并介绍了如何使用均方误差等指标进行模型评估。
摘要由CSDN通过智能技术生成

一直想好好掌握机器学习,西瓜书断断续续翻了几遍,每次都是看完没多久就忘记了,对细节也是一知半解,一直没法形成知识系统。可能之前都只是读,但没有写,没有好好地进行总结,因此尝试着自己做一下知识归纳。

从本质来说,线性模型就是通过属性的线性组合来进行预测的模型,假设 x i x_{i} xi x \bm{x} x的第i个属性,学习参数 w \bm{w} w b \bm{b} b,预测函数为 f ( x ) f(x) f(x)
(1) f ( x ) = w T x + b \begin{aligned} f(x)=\bm{w}^{T}\bm{x}+\bm{b} \tag{1} \end{aligned} f(x)=wTx+b(1)
有时候为了方便,会给 x x x增加一个哑结点,即恒为1的输入属性,把 b b b也当做权值进行学习,此时的 x \bm{x} x ( x 1 , x 2 , . . . . , x n , 1 ) (x_{1},x_{2},....,x_{n},1) (x1,x2,....,xn,1) w \bm{w} w ( w 1 , w 2 , . . . . , w n , b ) (w_{1},w_{2},....,w_{n},b) (w1,w2,....,wn,b) f ( x ) f(x) f(x)可以写作:

(2) f ( x ) = w T x \begin{aligned} f(x)=\bm{w}^{T}\bm{x} \tag{2} \end{aligned} f(x)=wTx(2)

线性模型可以用来做回归也可以做分类,在PCA降维和LDA线性判别中也是采用的线性模型,基本形式的SVM也可以看作是线性模型,可以说线性模型应用广泛,由于其形式简单,各类问题都会先从线性模型入手,然后再通过核函数等方法往非线性模型拓展。

首先要讨论的是线性回归模型,回归在个人理解就是在进行曲线拟合,这里一定要区分线性回归和逻辑回归,线性回归是用线性函数去拟合曲线,是真正意义上的回归,而逻辑回归实际上是分类,“逻辑回归”这个词似乎是有渊源的,但是这里就不追究了。

线性回归是试图学得
f ( x i ) = w x i + b i 使 得 f ( x i ) ≈ y i \begin{aligned} f(x_{i})=wx_{i}+b_{i}使得f(x_{i}) \approx y_{i} \end{aligned} f(xi)=wxi+bi使f(xi)yi

要学得参数 w \bm{w} w b \bm{b} b就要先规定损失函数,回归的评价标准有均方误差(MSE),均方根误差(RMSE),平均绝对误差(MAE),R平方误差(R Square),这里贴出公式:

特别地,采用均方误差有很好的几何意义,它对应了常用的“欧氏距离”,基于均方误差最小化来进行模型求解的方法也成为最小二乘法,需要注意的是最小二乘法不止应用在线性模型中,只要基于均方误差最小化优化模型,都可以称作最小二乘法。用最小二乘法可以求到参数的闭式解(解析解),公式参照西瓜书P54~P55(涉及到矩阵求导)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值