我们知道一个骰子有 6 个面,分别刻了 1 到 6 个点。下面给你 6 个骰子的初始状态,即它们朝上一面的点数,让你一把抓起摇出另一套结果。假设你摇骰子的手段特别精妙,每次摇出的结果都满足以下两个条件:
- 1、每个骰子摇出的点数都跟它之前任何一次出现的点数不同;
- 2、在满足条件 1 的前提下,每次都能让每个骰子得到可能得到的最大点数。
那么你应该可以预知自己第 n 次(1≤n≤5)摇出的结果。
输入格式:
输入第一行给出 6 个骰子的初始点数,即 [1,6] 之间的整数,数字间以空格分隔;第二行给出摇的次数 n(1≤n≤5)。
输出格式:
在一行中顺序列出第 n 次摇出的每个骰子的点数。数字间必须以 1 个空格分隔,行首位不得有多余空格。
输入样例:
3 6 5 4 1 4
3
输出样例:
4 3 3 3 4 3
样例解释:
这 3 次摇出的结果依次为:
6 5 6 6 6 6
5 4 4 5 5 5
4 3 3 3 4 3
在比赛的时候看到这道题,想到的是模拟。
如果用模拟的话感觉有点难写,然后想了一下
我们抽取k次,那如果不出意外,每次都是从6开始,然后抽k次(6一直到6-k) ,如果当前这个数字大于了6-k,那就再-1,否则就是6-k。最后时间复杂度为O(n)
#include <iostream>
using namespace std;
int main(){
int a[6];
for(int i=0;i<6;i++)cin>>a[i];
int k=0;
cin>>k;
for(int i=0;i<6;i++)
cout<<6-k+(a[i]>6-k?0:1)<<(i==5?"":" ");//这里我用的三目运算符处理末尾的空格
return 0;
}