GPLT2022 L1-085 试试手气

5 篇文章 0 订阅
3 篇文章 0 订阅

我们知道一个骰子有 6 个面,分别刻了 1 到 6 个点。下面给你 6 个骰子的初始状态,即它们朝上一面的点数,让你一把抓起摇出另一套结果。假设你摇骰子的手段特别精妙,每次摇出的结果都满足以下两个条件:

  • 1、每个骰子摇出的点数都跟它之前任何一次出现的点数不同;
  • 2、在满足条件 1 的前提下,每次都能让每个骰子得到可能得到的最大点数。

那么你应该可以预知自己第 n 次(1≤n≤5)摇出的结果。

输入格式:

输入第一行给出 6 个骰子的初始点数,即 [1,6] 之间的整数,数字间以空格分隔;第二行给出摇的次数 n(1≤n≤5)。

输出格式:

在一行中顺序列出第 n 次摇出的每个骰子的点数。数字间必须以 1 个空格分隔,行首位不得有多余空格。

输入样例:

3 6 5 4 1 4
3

输出样例:

4 3 3 3 4 3

样例解释:

这 3 次摇出的结果依次为:

6 5 6 6 6 6
5 4 4 5 5 5
4 3 3 3 4 3

在比赛的时候看到这道题,想到的是模拟。

如果用模拟的话感觉有点难写,然后想了一下

我们抽取k次,那如果不出意外,每次都是从6开始,然后抽k次(6一直到6-k) ,如果当前这个数字大于了6-k,那就再-1,否则就是6-k。最后时间复杂度为O(n)

#include <iostream>
using namespace std;

int main(){
    int a[6];
    for(int i=0;i<6;i++)cin>>a[i];
    int k=0;
    cin>>k;
    for(int i=0;i<6;i++)
        cout<<6-k+(a[i]>6-k?0:1)<<(i==5?"":" ");//这里我用的三目运算符处理末尾的空格
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值