深度学习任务,就算力来说,我们经常遇到两个问题:一是算力不够,二是价格太贵。
最近百度的同学发布了一个免费使用百度云GPU算力提交深度学习任务的工具PaddleCloud,能够帮助你一键快速发布深度学习任务,让我们一起来看一看这个工具是怎么做到的吧!
PaddleCloud介绍
PaddleCloud能够帮助您一键发起深度学习任务,为您提供免费底层计算资源、或提供快速打通云上计算资源通道,支持您快速发起单机/分布式飞桨框架训练任务,致力于推动AI应用更广泛地落地。
1、核心优势
使用PaddleCloud您将不需要配置繁琐复杂的运行环境,内置飞桨框架帮您一键发起单机/分布式深度学习任务,同时,为您提供免费底层计算资源、或提供快速打通云上计算资源通道,即使是无算力、不懂框架的小白,十分钟即可发起训练任务!
简单易用: 十分钟即可开始PaddlePaddle训练任务
自定义: 可自定义构建PaddlePaddle训练代码
任务管理: 集成了训练任务管理的能力
免费资源: 提供一定量的免费GPU资源(针对每位用户每天提供100分钟的免费训练资源)
按需付费: 付费GPU资源可按需使用
以下是原有云付费的使用流程 vs PaddleCloud的使用流程对比
2、应用场景
1)需要GPU计算资源,但本地没有GPU资源
2)本地有少量GPU资源,临时需要按需使用云上GPU资源
3)集成到本地环境中,实现本地+云端一体化体验
PaddleCloud的使用流程
结合房价预测模型的训练为例,进行步骤讲解,
fit-a-line(房价预测示例,是一个线性回归房价预测示例(单机示例),本示例是基于paddle1.6版本,源代码fit_a_line:, 示例说明文档fit-a-line文档: