chatgpt接口返回参数分析

接口请求使用二进制请求,数据流式返回,即分块(分批次)返回。

问题:一周有几天


请求头

 


参数详解 

参数名称

说明

role

消息发送者的角色,这里为 "assistant"。

id

消息的唯一标识符。

parentMessageId

父消息的 ID,可以用于确定消息之间的层次关系。

text

消息的文本内容,即 "一"。

delta

消息与原始文本的差异,即增加了一个汉字 "一"。

detail属性

id

(消息的唯一标识符,与上面的 id 属性相同。

object

消息对象的类型,这里为 "chat.completion.chunk",表示该消息是一个聊天补全块。

created

消息创建的时间戳,单位为秒。

model

使用的 AI 模型名称,这里是 "gpt-3.5-turbo-0301"。

choices属性

delta

该建议与原始文本的差异,这里为 {"content": "一"}。

index

该建议在所有建议中的索引号,这里为 0。

finish_reason

AI 模型提供补全建议的原因,"stop" 表示模型停止提供补全建议,null 表示模型继续提供建议,但内容还未加载完成。


  • role:消息发送者的角色,这里为 "assistant"。
  • id:消息的唯一标识符。
  • parentMessageId:父消息的 ID,可以用于确定消息之间的层次关系。
  • text:消息的文本内容,即 "一"。
  • delta:消息与原始文本的差异,即增加了一个汉字 "一"。

在 detail 属性中,包含以下子属性:

  • id:消息的唯一标识符,与上面的 id 属性相同。
  • object:消息对象的类型,这里为 "chat.completion.chunk",表示该消息是一个聊天补全块。
  • created:消息创建的时间戳,单位为秒。
  • model:使用的 AI 模型名称,这里是 "gpt-3.5-turbo-0301"。
  • choices:AI 模型生成的补全建议,是一个列表,仅包含一个元素。该元素包含以下属性:
    • delta:该建议与原始文本的差异,这里为 {"content": "一"}。
    • index:该建议在所有建议中的索引号,这里为 0。
    • finish_reason:AI 模型提供补全建议的原因,"stop" 表示模型停止提供补全建议,null 表示模型继续提供建议,但内容还未加载完成。


  • 首次返回数据
{
	"role": "assistant",
	"id": "chatcmpl-757xI2obW41Qyx7M9g25ZicbgjNWX",
	"parentMessageId": "12913811-4262-41b7-ba34-19bf62a0c0ae",
	"text": "",
	"detail": {
		"id": "chatcmpl-757xI2obW41Qyx7M9g25ZicbgjNWX",
		"object": "chat.completion.chunk",
		"created": 1681456576,
		"model": "gpt-3.5-turbo-0301",
		"choices": [{
			"delta": {
				"role": "assistant"
			},
			"index": 0,
			"finish_reason": null
		}]
	}
}
  • 第二次返回数据

{
	"role": "assistant",
	"id": "chatcmpl-757xI2obW41Qyx7M9g25ZicbgjNWX",
	"parentMessageId": "12913811-4262-41b7-ba34-19bf62a0c0ae",
	"text": "一",
	"detail": {
		"id": "chatcmpl-757xI2obW41Qyx7M9g25ZicbgjNWX",
		"object": "chat.completion.chunk",
		"created": 1681456576,
		"model": "gpt-3.5-turbo-0301",
		"choices": [{
			"delta": {
				"content": "一"
			},
			"index": 0,
			"finish_reason": null
		}]
	}
}
  • 最后一次返回结果

{
	"role": "assistant",
	"id": "chatcmpl-757xI2obW41Qyx7M9g25ZicbgjNWX",
	"parentMessageId": "12913811-4262-41b7-ba34-19bf62a0c0ae",
	"text": "一周有七天。",
	"detail": {
		"id": "chatcmpl-757xI2obW41Qyx7M9g25ZicbgjNWX",
		"object": "chat.completion.chunk",
		"created": 1681456576,
		"model": "gpt-3.5-turbo-0301",
		"choices": [{
			"delta": {},
			"index": 0,
			"finish_reason": "stop"
		}]
	}
}

### 关于ChatGPT错误消息的解决方案 对于处理来自ChatGPT或其他类似平台产生的错误消息,可以借鉴Java工程师分析错误的方式[^1]。当面对特定错误时,构建一个清晰的问题描述非常重要。这通常涉及提供详细的上下文信息,包括但不限于具体的错误信息、堆栈跟踪以及发生问题的相关代码文件。 针对这些细节,一种有效的方法是创建结构化的提示(Prompt),该提示能够指导AI模型更有效地解析并给出合理的建议。例如,在遇到运行时异常的情况下,可以通过如下方式构造请求: ```java private static final String prompt = "You are a good Java engineer, please analyze the following error and provide possible solutions." + "The error message is : %s, The error stack is : %s. The code file is : %s"; ``` 此模板允许用户填充实际发生的错误详情,从而帮助获得更有针对性的帮助。此外,为了进一步提高反馈的质量,还可以考虑加入更多背景资料,比如使用的库版本号、操作系统环境等额外参数。 如果是在Web应用环境中调用API接口获取FAQ解答,则可能涉及到对返回数据的有效性验证逻辑[^2]。确保接收到的回答确实包含了预期的内容,并将其适当地集成到对话流当中去。下面是一个Python片段展示了如何实现这一点: ```python elif (tool_call.function.name == 'get_faq'): print(f'get_faq:') args = json.loads(tool_call.function.arguments) answer = get_faq(**args) print(f'question_id:', answer) messages.append( { "role": "tool", "content": "answer: " + str(answer), "tool_call_id": tool_call.id } ) print(f'messages:', messages) response = get_completion(messages) print(f'response:', response) return jsonify({ 'userMessage': user_message, 'botMessage': response.content, }) ``` 这段代码不仅实现了基本的功能需求——即查询常见问题数据库并将结果呈现给最终用户;同时也加入了必要的日志记录语句以便后续调试之用。 最后值得注意的是,无论是哪类技术难题,找到合适的专家资源总是解决问题的关键之一。特别是在某些专业领域内,如汽车维修方面,拥有专门技能的人士往往能更快更好地定位故障原因并提出修复方案[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红尘炼炼心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值