1.获取股票数据后的日期排序问题处理。通常我们获取的数据格式是最新日期在最前面,所以我们需要让他换个相反的顺序。以及选出我们需要的列数据。
df=ts.get_hist_data('002412')
df.sort_index(ascending=True,inplace=True)
df=df[['open','high','close','low','p_change','volume']]
2.日期间隔的处理。在我们需要计算某相邻日期的间隔时,首选需要对日期格式进行处理,然后再进行相减就可以了。这里我们先把作为日期的索引列换掉然后转换格式。
df.reset_index(inplace=True)
df['date']=pd.to_datetime(df['date'])
可以看到加上.days 就可以获取到相邻日期的间隔。
有时候我们会需要用到间隔的整数,但是获取整数间隔,这种处理只能单