tushare常用的几种数据格式加工处理

1.获取股票数据后的日期排序问题处理。通常我们获取的数据格式是最新日期在最前面,所以我们需要让他换个相反的顺序。以及选出我们需要的列数据。

df=ts.get_hist_data('002412')
df.sort_index(ascending=True,inplace=True)
df=df[['open','high','close','low','p_change','volume']]

 2.日期间隔的处理。在我们需要计算某相邻日期的间隔时,首选需要对日期格式进行处理,然后再进行相减就可以了。这里我们先把作为日期的索引列换掉然后转换格式。

df.reset_index(inplace=True)
df['date']=pd.to_datetime(df['date'])

 

 可以看到加上.days  就可以获取到相邻日期的间隔。

有时候我们会需要用到间隔的整数,但是获取整数间隔,这种处理只能单

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值