(2016年9月更新)目前,tensorflow可以使用Anaconda(一个基于python的环境),对于tensorflow来说,可以比较顺利的安装python的相关依赖包,避免各种因为python版本冲突造成的麻烦,经过测试,国内可以访问相关资源。实践了一下,步骤如这个博客所示:http://blog.csdn.net/nxcxl88/article/details/52704877
下面的这个博客主要是使用docker的步骤。
由于国内链接的一些原因,使用TensorFlow的资源比较困难,因此如果直接按照TensorFlow的官网Tutorial会出现各种错误。不过网上的几个资源还是给了一条比较给力的路径来实现TensorFlow的使用。下面就结合这些文章的链接,说一说如何快速安装和配置TensorFlow,并且实现第一个MNIST的例子。
1. 安装TensorFlow
这里只给出如何使用Docker镜像安装,目前找到可以实施的文章是:https://segmentfault.com/a/1190000003984727
可以参考这篇文章中的内容来配置和安装一个docker版本的TensorFlow,安装过程较为简单,而且这篇文章的作者还提供了他/她下载的docker镜像,大概700M。
2. 运行MNIST Beginner Tutorial
2.1 下载可运行的代码
下面这篇文章给出了一个可以很快运行的MNIST的代码版本,并且给出了相应的GITHUB下载地址:http://blog.csdn.net/yhl_leo/article/details/50614444