TensorFlow学习笔记(一):快速安装与使用TensorFlow

这篇博客介绍了如何在Docker中快速安装TensorFlow,并通过MNIST Beginner Tutorial进行实战。首先,使用Docker镜像安装TensorFlow,解决国内链接问题。接着,下载可运行的MNIST代码并配置Docker共享文件夹。然后,下载MNIST数据集到容器内,运行训练得到正确率。最后,通过TensorBoard可视化训练结果。
摘要由CSDN通过智能技术生成

(2016年9月更新)目前,tensorflow可以使用Anaconda(一个基于python的环境),对于tensorflow来说,可以比较顺利的安装python的相关依赖包,避免各种因为python版本冲突造成的麻烦,经过测试,国内可以访问相关资源。实践了一下,步骤如这个博客所示:http://blog.csdn.net/nxcxl88/article/details/52704877

下面的这个博客主要是使用docker的步骤。

由于国内链接的一些原因,使用TensorFlow的资源比较困难,因此如果直接按照TensorFlow的官网Tutorial会出现各种错误。不过网上的几个资源还是给了一条比较给力的路径来实现TensorFlow的使用。下面就结合这些文章的链接,说一说如何快速安装和配置TensorFlow,并且实现第一个MNIST的例子。


1. 安装TensorFlow

这里只给出如何使用Docker镜像安装,目前找到可以实施的文章是:https://segmentfault.com/a/1190000003984727

可以参考这篇文章中的内容来配置和安装一个docker版本的TensorFlow,安装过程较为简单,而且这篇文章的作者还提供了他/她下载的docker镜像,大概700M。


2. 运行MNIST Beginner Tutorial

2.1 下载可运行的代码

下面这篇文章给出了一个可以很快运行的MNIST的代码版本,并且给出了相应的GITHUB下载地址:http://blog.csdn.net/yhl_leo/article/details/50614444

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值