深度学习讲座笔记:Deep Learning for Computer Vision - Andrej Karpathy at Bay Area Deep Learning School

这篇博客记录了Andrej Karpathy在Bay Area Deep Learning School的讲座内容,涵盖迁移学习、ConvNetJS、深度可视化工具箱、ILSVRC竞赛的胜出架构,以及如何利用CNN进行特征提取并应用于不同任务。
摘要由CSDN通过智能技术生成

视频地址:

Day 1:

http://v.youku.com/v_show/id_XMTczNzYxNjg5Ng==

Day 2:

http://v.youku.com/v_show/id_XMTczODc2ODE3Mg==

Andrej的演讲


Andrej Karpathy这次演讲是Day 1 的第2个演讲,题为深度学习在图像处理方面的应用,阐述了卷积神经网络架构的设计,以及ILSVR历年竞赛的情况以及最近在图像处理这方面的进展,并且给出了一些如何开展这方面研究工作的实用建议。

1 迁移学习

    迁移学习(Transfer Learning)是将在一种应用上训练好的网络用于另一类应用(如将ImageNet上进行多种物体种类分类的训练网络专用于建筑物细分类应用)。由于深度学习的准确率和样本数量有关,因此新的应用只有小的数据集,可将训练好的网络作为特征提取器(feature extractor),只训练部分的全连接层;而如果新的应用的数据集是中等规模的数据集,那么可以进一步训练全连接层和部分的卷积层。实践这种概念的一个好方式,就是使用Imagenet上面目前最佳表现的网络,如去年的冠军ResNet。使用Keras架构(https://keras.io/)可以直接调用如ResNet,并且可以直接使用已经训练好的网络参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值