代数数和超越数

本文详细阐述了代数数的概念及其在数学领域的应用,并对比了代数数与超越数的区别,深入理解两者在数论中的地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代数数

代数数是代数与数论中的重要概念,指任何整系数多项式的复根。这即是说若x,是一个代数数,那么必然存在整数 an,an1,,a0(n1,an0) ,使得 x ,是以下方程的根:

anxn+an1xn1++a2x2+a1x+a0=0

所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作 A Q¯¯¯ ,是复数域 C 的子域。
不是代数数的实数称为超越数,例如圆周率,自然对数 e <script type="math/tex" id="MathJax-Element-7">e</script>。

超越数

在数论中,超越数是指任何一个不是代数数的无理数。只要它不是任何一个有理系数代数方程的根,它即是超越数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值