关于对复数物理意义的理解

知乎原文地址如下:https://www.zhihu.com/question/23234701/answer/26017000


复数最直观的理解就是旋转!

4*i*i = -4

就是“4”在数轴上旋转了180度。

那么4*i就是旋转了90度。
<img src="https://i-blog.csdnimg.cn/blog_migrate/b1d016829af386a8a770c415abf2a23c.jpeg" data-rawwidth="1000" data-rawheight="800" class="origin_image zh-lightbox-thumb" width="1000" data-original="https://pic4.zhimg.com/8307ff7d73681da79ad77cc09e71a28f_r.jpg">
另外,e^t是什么样呢?
<img src="https://i-blog.csdnimg.cn/blog_migrate/09edbae60da164b7ad80b20b0f28aaf1.png" data-rawwidth="800" data-rawheight="600" class="origin_image zh-lightbox-thumb" width="800" data-original="https://pic3.zhimg.com/67eb5377af1dfca0e2cbea6637076e96_r.jpg">但当你在指数上加上i之后呢? 但当你在指数上加上i之后呢?
<img src="https://i-blog.csdnimg.cn/blog_migrate/be6ece6221f3c43242aa75b104c06254.jpeg" data-rawwidth="2000" data-rawheight="999" class="origin_image zh-lightbox-thumb" width="2000" data-original="https://pic2.zhimg.com/3af2b68b0bc9802a3cce9d6f56f3bbf1_r.jpg">变成了一个螺旋线。是不是和电磁场很像?(想拿欧拉公式去跟女生炫学术的男生注意了:她们,真的,不CARE) 变成了一个螺旋线。是不是和电磁场很像?(想拿欧拉公式去跟女生炫学术的男生注意了:她们,真的,不CARE)

当然,更重要的意义在于复数运算保留了二维信息。

假如我让你计算3+5,虽然你可以轻松的计算出8,但是如果让你分解8你会有无数种分解的方法,3和5原始在各自维度上的信息被覆盖了。
但是计算3+5i的话,你依然可以分解出实部和虚部,就像上图那样。

基于以上两个理由,用复数来描述电场与磁场简直完美到爆棚!
我们即可以让电场强度与复数磁场强度相加而不损失各自的信息,又满足了电场与磁场90度垂直的要求。另外,一旦我们需要让任何一个场旋转90度,只要乘一个“i”就可以了
<img src="https://i-blog.csdnimg.cn/blog_migrate/51cf4c0d0c29a1a6cedf3794ae539d41.jpeg" data-rawwidth="426" data-rawheight="457" class="origin_image zh-lightbox-thumb" width="426" data-original="https://pic1.zhimg.com/78ed7fd1c151b358445ef5697af9c6b0_r.jpg">

@physixfan 答案的提醒,再补充一点。
正弦波在频域可以看作是自然数中的“1”,可以构成其他数字的基础元素。当你需要5的时候,你可以看成是1*5(基础元素的五倍)也看以看成2+3(一个基础元素2倍与基础元素3倍的和)。这些用基础元素构成新元素的运算是线性运算。
但是现在你如何用线性运算吧2sin(wt)变换成4sin(wt+pi/6)呢?

利用欧拉公式,我们可以将任何一个正弦波看作其在实轴上的投影。假如两个不同的正弦波,可以用数学表达为:
<img src="https://i-blog.csdnimg.cn/blog_migrate/f6f6c5578d974347411deaf1d55d3dd2.png" data-rawwidth="48" data-rawheight="60" class="content_image" width="48">
好了,现在如果我想用第一个正弦波利用线性变换为第二个,我们就只需要将A乘对应的系数使其放大至B(本例为乘2),然后将θ1加上一定的角度使其变为θ2(本例为加30度),然后将得到的第二个虚数重新投影回实轴,就完成了在实数中完全无法做到的变换。

这种利用复指数来计算正弦波的方法也对电磁波极其适用,因为电磁波都是正弦波,当我们需要一个电磁波在时间上延迟/提前,或是在空间上前移/后移,只需要乘一个复指数就可以完成对相位的调整了。


作者:Heinrich
链接:https://www.zhihu.com/question/23234701/answer/26017000
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值