做题感悟:刚开始做时完全没有思路,甚至题意都不怎么清楚,但是当下定决心解决它时就很容易解决了。
解题思路:二分:算出最小份蛋糕的体积和最大份蛋糕的体积,然后枚举每一种情况看是否满足(让esp = 1e - 7 即可,精确到 8 会超时)。
代码:
#include<stdio.h>
#include<iostream>
#include<map>
#include<stack>
#include<string>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std ;
#define LEN sizeof(struct node)
#define pret(a,b) memset(a,b,sizeof(a))
#define lld __int64
const double PI = 3.1415926535898 ;
const int INF = 99999999 ;
const double esp = 1e-7 ;// 精确到 7 位即可,8位超时
const long long mod= 1000 ;
const int MX = 10005 ;
int n,m ;
double a[MX] ;
bool find(double x)
{
int ans=0 ;
for(int i=n-1 ;i>=0 ;i--)
{
ans=ans+(int)(a[i]/x) ;
if(ans>=m) return true ;
}
return false ;
}
double binary_search(double le,double rt)
{
double mid ;
mid=(le+rt)/2.0 ; // 如果le == rt 的情况
while(le+esp<=rt)
{
mid=(rt+le)/2.0 ;
find(mid) ? le=mid : rt=mid ;
}
return mid ;
}
int main()
{
int Tx ;
scanf("%d",&Tx) ;
while(Tx--)
{
scanf("%d%d",&n,&m) ;
m++ ;
double x,sum=0 ;
for(int i=0 ;i<n ;i++)
{
scanf("%lf",&x) ;
a[i]=PI*x*x ;
sum+=a[i] ;
}
sort(a,a+n) ;
double le=a[n-1]/m,rt=sum/m ;
printf("%.4lf\n",binary_search(le,rt)) ;
}
return 0 ;
}