什么是完全平方数?
完全平方数就是某个整数的平方。比如:
- 1 = 1 2 1 = 1^2 1=12
- 9 = 3 2 9 = 3^2 9=32
- 16 = 4 2 16 = 4^2 16=42
什么是完全数?
完全数是一个数的所有真约数(除了它自己以外的约数)加起来正好等于这个数本身。比如:
- 6 6 6 的真约数是 1 , 2 , 3 1, 2, 3 1,2,3,加起来 1 + 2 + 3 = 6 1 + 2 + 3 = 6 1+2+3=6,所以 6 6 6 是完全数。
列举法先看看情况
1 1 1 是完全平方数,因为 1 = 1 2 1 = 1^2 1=12。但 1 1 1 没有真约数(除了它自己),所以它的真约数和是 0 0 0,而不是 1 1 1。因此, 1 1 1 不是完全数。
4 4 4 是完全平方数,因为 4 = 2 2 4 = 2^2 4=22。 4 4 4 的真约数是 1 , 2 1, 2 1,2,加起来 1 + 2 = 3 1 + 2 = 3 1+2=3,不等于 4 4 4。所以 4 4 4 不是完全数。
9 9 9 是完全平方数,因为 9 = 3 2 9 = 3^2 9=32。 9 9 9 的真约数是 1 , 3 1, 3 1,3,加起来 1 + 3 = 4 1 + 3 = 4 1+3=4,不等于 9 9 9。所以 9 9 9 不是完全数。
数学证明
假设 x x x 是一个完全平方数,验证它是否可能为完全数。
- 设 x = n 2 x = n^2 x=n2,其中 n n n 是正整数。
- 完全数的定义要求 x x x 的所有真约数之和等于 x x x。我们需要分析 x = n 2 x = n^2 x=n2 的约数性质。
对于任意正整数 x x x,它的约数总是成对出现。例如,如果 d d d 是 x x x 的约数,则 x d \frac{x}{d} dx 也是 x x x 的约数。如果 x = n 2 x = n^2 x=n2 是完全平方数,则 n n n 本身是一个重复的约数(即 n × n = x n \times n = x n×n=x)。因此,约数中有一个单独的项 n n n,其余的约数仍然成对出现。
真约数之和:
假设
x
x
x 的所有约数为
d
1
,
d
2
,
…
,
d
k
d_1, d_2, \dots, d_k
d1,d2,…,dk,其中
d
k
=
x
d_k = x
dk=x。所有约数之和记为
σ
(
x
)
\sigma(x)
σ(x),则真约数之和为
σ
(
x
)
−
x
\sigma(x) - x
σ(x)−x。如果
x
x
x 是完全数,则必须满足:
σ
(
x
)
−
x
=
x
⇒
σ
(
x
)
=
2
x
\sigma(x) - x = x \quad \Rightarrow \quad \sigma(x) = 2x
σ(x)−x=x⇒σ(x)=2x
对于完全平方数 x = n 2 x = n^2 x=n2,其约数结构决定了 σ ( x ) \sigma(x) σ(x) 的值。根据数学推导, σ ( x ) \sigma(x) σ(x) 的值通常会小于 2 x 2x 2x(除非 x x x 是特殊的完全数形式,如欧几里得-欧拉定理描述的偶完全数)。具体来说,完全平方数的约数分布特性使其很难满足 σ ( x ) = 2 x \sigma(x) = 2x σ(x)=2x 的条件。
什么是 σ ( x ) \sigma(x) σ(x)?
σ ( x ) \sigma(x) σ(x) 是一个数论函数,表示正整数 x x x 的所有正约数之和。例如:
- 对于 x = 6 x = 6 x=6,它的正约数是 1 , 2 , 3 , 6 1, 2, 3, 6 1,2,3,6,所以 σ ( 6 ) = 1 + 2 + 3 + 6 = 12 \sigma(6) = 1 + 2 + 3 + 6 = 12 σ(6)=1+2+3+6=12。
- 对于 x = 10 x = 10 x=10,它的正约数是 1 , 2 , 5 , 10 1, 2, 5, 10 1,2,5,10,所以 σ ( 10 ) = 1 + 2 + 5 + 10 = 18 \sigma(10) = 1 + 2 + 5 + 10 = 18 σ(10)=1+2+5+10=18。
对于完全数的定义,我们要求:
σ
(
x
)
−
x
=
x
⇒
σ
(
x
)
=
2
x
\sigma(x) - x = x \quad \Rightarrow \quad \sigma(x) = 2x
σ(x)−x=x⇒σ(x)=2x
也就是说,完全数的所有正约数之和正好是它本身的两倍。
为什么 σ ( x ) \sigma(x) σ(x) 通常小于 2 x 2x 2x?
约数总是成对出现。如果 d d d 是 x x x 的约数,则 x d \frac{x}{d} dx 也是 x x x 的约数。如果 x x x 不是完全平方数,那么所有约数都可以配对;如果 x x x 是完全平方数,中间会多出一个单独的约数 x \sqrt{x} x。
完全数是一个非常特殊的数,满足 σ ( x ) = 2 x \sigma(x) = 2x σ(x)=2x。这意味着它的约数分布必须极其“平衡”,使得所有真约数的和恰好等于 x x x。这种平衡是非常罕见的(1e8内就5个)。
数学推导: σ ( x ) \sigma(x) σ(x) 的上界
对于绝大多数正整数
x
x
x,
σ
(
x
)
\sigma(x)
σ(x) 的值通常远小于
2
x
2x
2x。
欧拉的公式
对于任意正整数
x
x
x,如果将其分解为质因数的标准形式:
x
=
p
1
e
1
p
2
e
2
⋯
p
k
e
k
x = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}
x=p1e1p2e2⋯pkek
其中
p
1
,
p
2
,
…
,
p
k
p_1, p_2, \dots, p_k
p1,p2,…,pk 是不同的质数,
e
1
,
e
2
,
…
,
e
k
e_1, e_2, \dots, e_k
e1,e2,…,ek 是它们的幂次。那么
σ
(
x
)
\sigma(x)
σ(x) 可以表示为:
σ
(
x
)
=
∏
i
=
1
k
(
p
i
e
i
+
1
−
1
p
i
−
1
)
\sigma(x) = \prod_{i=1}^k \left( \frac{p_i^{e_i+1} - 1}{p_i - 1} \right)
σ(x)=i=1∏k(pi−1piei+1−1)
分析
σ
(
x
)
\sigma(x)
σ(x) 和
2
x
2x
2x 的关系
为了使
σ
(
x
)
=
2
x
\sigma(x) = 2x
σ(x)=2x,我们需要确保每个因子
p
i
e
i
+
1
−
1
p
i
−
1
\frac{p_i^{e_i+1} - 1}{p_i - 1}
pi−1piei+1−1 的乘积正好等于
2
x
2x
2x。然而,对于大多数
x
x
x,这些因子的乘积通常会小于
2
x
2x
2x,因为:
- 每个因子 p i e i + 1 − 1 p i − 1 \frac{p_i^{e_i+1} - 1}{p_i - 1} pi−1piei+1−1 本身通常是小于 p i e i + 1 p_i^{e_i+1} piei+1 的。
- 因此, σ ( x ) \sigma(x) σ(x) 的值通常会小于 2 x 2x 2x。
例外情况:完全数
只有在非常特殊的情况下(如欧几里得-欧拉定理描述的偶完全数),
σ
(
x
)
\sigma(x)
σ(x) 才能恰好等于
2
x
2x
2x。这些数的形式为:
x
=
2
p
−
1
(
2
p
−
1
)
x = 2^{p-1}(2^p - 1)
x=2p−1(2p−1)
其中
2
p
−
1
2^p - 1
2p−1 是一个梅森素数。这种形式的数极其稀少。
所以说,对于绝大多数正整数 x x x, σ ( x ) \sigma(x) σ(x) 的值通常会小于 2 x 2x 2x。只有在极少数情况下(如完全数), σ ( x ) \sigma(x) σ(x) 才可能等于 2 x 2x 2x。因此,完全平方数几乎不可能是完全数,因为它们的约数分布特性决定了 σ ( x ) \sigma(x) σ(x) 的值通常远小于 2 x 2x 2x。