PTA6-4 利用指针,求解一元二次方程分数 17全屏浏览题目切换布局作者 赵静静单位 浙江工贸职业技术学院答案

题目:

6-4 利用指针,求解一元二次方程

分数 17

全屏浏览题目

切换布局

作者 赵静静

单位 浙江工贸职业技术学院

这是一个函数题模板,这里写题目要求。
求解一元二次方程a∗x2+b∗x+c=0,函数返回值实数解的个数,并在方程有实数解时,将解存入指针形参x1和x2指向的变量之中

函数接口定义:

 

在这里描述函数接口。例如: int f(double a, double b, double c, double *x1, double *x2) ;

在这里解释接口参数。例如:其中 a、b和 c 都是用户传入的参数,表示二元一次方程的系数。 当方程有实数解时,将解存入指针x1 和x2指向的变量中。函数须返回方程的解的个数,无解时返回0。

裁判测试程序样例:

 

在这里给出函数被调用进行测试的例子。例如: #include<stdio.h> #include "math.h" int f(double a, double b, double c, double *x1, double *x2); int main() { double a,b,c; double x1,x2; scanf("%lf %lf %lf",&a,&b,&c); int result = f(a,b,c,&x1,&x2); if(result == 0){ printf("此方程无解!"); return 0; } printf("方程的解为:x1 = %f , x2=%f",x1,x2); return 0; } /* 请在这里填写答案 */

输入样例1:

在这里给出一组输入。例如:

3 7 5

输出样例1:

在这里给出相应的输出。例如:

此方程无解!

输入样例2:

在这里给出一组输入。例如:

1 -1 -1

输出样例2:

在这里给出相应的输出。例如:

方程的解为:x1 = 1.618034 , x2=-0.618034

 答案:

int f(double a, double b, double c, double *x1, double *x2) 
{
    double p=0,q=0;
    double disc;
    disc=b*b-4*a*c;
    if(disc<0)
        return 0;
    else if(disc==0)
    {
        p=-b/(2.0*a);
        q=sqrt(disc)/(2.0*a);
        *x1=p+q;
        *x2=p-q;
        return 1;
    }
    else if(disc>0)//后面两个可以合并,我这是当时按照要求写的。
    {
        p=-b/2.0*a;
        q=sqrt(disc)/2.0*a;//正确的2.0*a要加小括号,我做时加了出错了,每家反而对了,抄的的时候理性点!!
        *x1=p+q;
        *x2=p-q;
        return 2;
    }
}

一元二次方程求解中,我们通常使用公式法,特别是当方程的形式为ax^2 + bx + c = 0(a≠0),其中x是未知数,a、b和c是已知系数。在C语言中,你可以创建一个函数来计算两个实根。以下是简单的步骤和代码示例: ```c #include <stdio.h> #include <math.h> // 函数声明,接受三个double类型的参数并返回两个解 void solveQuadratic(double a, double b, double c); int main() { double a, b, c; // 输入方程的系数 printf("请输入一元二次方程的系数 a, b 和 c:\na = "); scanf("%lf", &a); printf("b = "); scanf("%lf", &b); printf("c = "); scanf("%lf", &c); // 如果a等于0,这不是二次方程,需要特殊处理 if (a == 0) { printf("这不是一个有效的二次方程(a不能为0)。"); } else { double discriminant = b * b - 4 * a * c; // 计算判别式 if (discriminant > 0) { double root1 = (-b + sqrt(discriminant)) / (2 * a); // 正根 double root2 = (-b - sqrt(discriminant)) / (2 * a); // 负根 printf("方程有两个不同的实根: %.2lf 和 %.2lf\n", root1, root2); } else if (discriminant == 0) { double root = -b / (2 * a); printf("方程有一个实根: %.2lf\n", root); } else { // 复数根 double realPart = -b / (2 * a); double imaginaryPart = sqrt(-discriminant) / (2 * a); printf("方程有两个复数根: %.2lf + %.2lfi 和 %.2lf - %.2lfi\n", realPart, imaginaryPart, realPart, imaginaryPart); } } return 0; } // 解决函数 void solveQuadratic(double a, double b, double c) { // 实现细节省略 } ``` 这个程序首先输入方程的系数,然后根据判别式的值判断方程的根的性质。如果需要详细了解函数`solveQuadratic`的实现细节,可以询问关于如何计算复数根的部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

綤!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值