题解:
自己手模一下就很容易就发现所谓的小凯运算就是两数之和除以二嘛,然后呢我们就考虑乱搞一下,因为如题所述每次合并的只能是相邻的两个,然后我们叫考虑枚举区间中点点然后一直分下去直到只有一个或连个元素,然后再自下向上维护就OK,不过还要加一个记忆化才行,因为上一层中点不一样可能这一层分的区间有重复就不要计算了
#include<bits/stdc++.h>
using namespace std;
long long n;
long long a[155];
set<long long>ans[155][155];
long long read() {
long long num=0,f=1;
char ch=getchar();
while(ch>'9'||ch<'0') {
if(ch=='-') {
f=-1;
}
ch=getchar();
}
while(ch>='0'&&ch<='9') {
num=(num<<1)+(num<<3)+ch-'0';
ch=getchar();
}
return num*f;
}
void work(long long l,long long r) {
if(l==r){
ans[l][r].insert(a[l]);
return;
}
if(l==r-1){
ans[l][r].insert((a[l]+a[r])>>1);
return;
}
for(long long i=l+1; i<=r; i++) {
if(!ans[l][i-1].size())
work(l,i-1);
if(!ans[i][r].size())
work(i,r);
for(set<long long>:: iterator it=ans[l][i-1].begin(); it!=ans[l][i-1].end(); it++) {
for(set<long long>:: iterator itt=ans[i][r].begin(); itt!=ans[i][r].end(); itt++) {
ans[l][r].insert((*it+*itt)>>1);
}
}
}
}
int main() {
n=read();
for(long long i=1; i<=n; i++) {
a[i]=read();
}
work(1,n);
for(set<long long>:: iterator it=ans[1][n].begin(); it!=--ans[1][n].end(); it++) {
printf("%lld ",*it);
}
printf("%lld",*(--ans[1][n].end()));
}