任务安排
描述
有N个任务排成一个序列在一台机器上等待执行,它们的顺序不得改变。机器会把这N个任务分成若干批,每一批包含连续的若干个任务。从时刻0开始,任务被分批加工,执行第 i 个任务所需的时间是 T_i。另外,在每批任务开始前,机器需要S的启动时间,故执行一批任务所需的时间是启动时间S加上每个任务所需时间之和。
一个任务执行后,将在机器中稍作等待,直至该批任务全部执行完毕。也就是说,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数 C_i。请为机器规划一个分组方案,使得总费用最小。
例如:S=1;T={1,3,4,2,1};C={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用 {15,10,30,42,56},总费用就是153。
输入格式
第一行是N(1<=N<=5000)。
第二行是S(0<=S<=50)。
下面N行每行有一对数,分别为Ti和Ci,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。
输出格式
一个数,最小的总费用。
样例输入
5
1
1 3
3 2
4 3
2 3
1 4
样例输出
153
数据范围与约定
1≤N≤5000,1≤S≤50,1≤T_i,C_i≤100
题解:
一看是一道区间的题,马上想到DP、段树或者是单调队列;
先来一波暴力:
#include<bits/stdc++.h>
using namespace std;
int N,S;
struct oo{
int t,c;
}work[5005];
int dp[5005][5005];
int ans=0x3f3f3f;
int main(){
cin>>N;
cin>>S;
memset(dp,0x3f3f3f,sizeof(dp));
dp[0][0]=0;
for(int i=1;i<=N;i++){
cin>>work[i].t>>work[i].c;
work[i].t+=work[i-1].t;
work[i].c+=work[i-1].c;
dp[0][i]=0;
}
for(int i=1;i<=N;i++){
for(int j=1;j<=i;j++){
for(int k=0;k<i;k++){
dp[i][j]=min(dp[i][j],dp[k][j-1]+(S*j+work[i].t)*(work[i].c-work[k].c));
}
}
}
for(int i=1;i<=N;i++){
ans=min(ans,dp[N][i]);
}
cout<<ans;
}
暴力应该还是很好想的,就是一个毫无优化的DP嘛,dp[i][j]就表示前i个分作j批
这是稍稍优化一点的:
#include<bits/stdc++.h>
using namespace std;
long long N,S;
struct oo{
long long t,c;
}work[5005];
long long dp[5005];
long long ans=0x3f3f3f;
int main(){
cin>>N;
cin>>S;
memset(dp,0x3f3f3f,sizeof(dp));
dp[0]=0;
for(int i=1;i<=N;i++){
cin>>work[i].t>>work[i].c;
work[i].t+=work[i-1].t;
work[i].c+=work[i-1].c;
}
for(int i=1;i<=N;i++){
for(int j=0;j<i;j++){
dp[i]=min(dp[i],dp[j]+(work[i].c-work[j].c)*work[i].t+S*(work[N].c-work[j].c));
}
}
cout<<dp[N];
}
在优化一点呢就是提出来:
#include<bits/stdc++.h>
using namespace std;
long long N,S;
struct oo{
long long t,c;
}work[10005];
long long dp[10005];
long long ans=0x3f3f3f;
int main(){
cin>>N;
cin>>S;
memset(dp,0x3f3f3f,sizeof(dp));
dp[0]=0;
for(int i=1;i<=N;i++){
cin>>work[i].t>>work[i].c;
work[i].t+=work[i-1].t;
work[i].c+=work[i-1].c;
}
for(int i=1;i<=N;i++){
long long I=0x3f3f3f;
for(int j=0;j<i;j++){
I=min(I,dp[j]-work[j].c*work[i].t-S*work[j].c);
}
dp[i]=I+work[i].c*work[i].t+S*work[N].c;
}
cout<<dp[N];
}
再优化一点就是单调队列和斜率优化了:大家可以看我另一篇博客