使用自带的ImageDataGenerator,有一个致命的缺点是对于尺寸各不相同的输入图像,无法完成Resize至短边为224的操作
若使用自带的Sequence,相当于PyTorch中的DataLoader,为了构造一个batch data,要使用for循环,载入效率大大降低
因此目前使用model.fit_generator的方案
关于PIL.Image与cv2,cv2的速度快,PIL浪费了大量时间在Image->np.array的转换上了
使用自带的ImageDataGenerator,有一个致命的缺点是对于尺寸各不相同的输入图像,无法完成Resize至短边为224的操作
若使用自带的Sequence,相当于PyTorch中的DataLoader,为了构造一个batch data,要使用for循环,载入效率大大降低
因此目前使用model.fit_generator的方案
关于PIL.Image与cv2,cv2的速度快,PIL浪费了大量时间在Image->np.array的转换上了