对于任意两个复数y1,y2
y1 = a + bi
y2 = c + di
以y1为例:a 为实部,b为虚部,i^2 = - 1
扩展: 共轭复数(y1,y2实部相同,虚部互为相反数,当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作zˊ。同时, 复数zˊ称为复数z的复共轭)
复数的加法:
y1 + y2 = (a + bi) + (c + di) = (a + c) + (b + d)i
两个复数的和仍是复数,它的是不是原来两个复数实部的和,他的虚部还是两个虚部的和,复数的加法满足交换律和结合律
即 : y1 + y2 = y2 + y1 (交换律) (y1 + y2) + y3 = y1 + (y2 + y3) (结合律)
复数的减法:
y1 - y2 = (a + bi) - (c + di) = (a - c) + (b - d)i
复数的乘法:
y1 = a + bi;
y2 = c + di;
(其中,a、b、c、d ∈R)的任意两个复数,那么他们的积为:
(a + bi) * (c + di) = (ac - bd) + (bc + ad)i
↕展开
ac + adi + cbi + bdi^2 因为 i^2 = -1 所以结果是(ac - bd) + (bc + ad)i
复数的除法:
y1 = a + bi;
y2 = c + di;
(其中,a、b、c、d ∈R)的任意两个复数,那么他们的商为:
法1:
法2: