最短路径

Problem B 最短路径

Accepted: 17    Total Submit: 51
Time Limit: 1000ms    Memony Limit: 32768KB

Description

?有一个无向加权图,节点的序号从1开始。请你找出度最大的两个点,然后求这两个点之间的最短路径值。

Input

输入有若干个案例,每个案例的第1行有2个整数m,n,m是节点数,n是边数,接着有n行,每行有三个数s,t,v表示从节点s到t的权值是v。

Ouput

输出最短路径。 

Sample Input

4 5

1 2 1

2 3 2

1 3 5

1 4 3

4 3 1

Sample Output

3

Hint

Source

zmh

 

代码:

#include"iostream"
#include <vector>
using namespace std;
int const INF = 0x3fffffff;
int n,m;
int mp[100][100];
int cnt[100],dis[100],path[100],vis[100];
// cnt计算度数
// dis记录距离
// path记录结点
// vis永久标号
void init(){
	memset(cnt,0,sizeof(cnt));
	memset(vis,0,sizeof(cnt));
	for (int i = 0; i < n; i++){
		for (int j = 0; j < n; j++)
			mp[i][j] = INF;
	}
	for(int i = 0;i <= n;i++){
		dis[i] = 99999,path[i] = -1;
	}
	
	
}
int main(){
	
	while(~scanf("%d %d",&n,&m)){
		init();
		for(int i = 0;i < m;i++){
			int x,y,l;
			scanf("%d %d %d",&x,&y,&l);
			cnt[x]++;cnt[y]++;//算出度数
			mp[x][y] = l,mp[y][x] = l;
		}
		int mx = 0;
		int p1,p2;
		// 两个for循环 得到度数最大的两个点
		for(int i = 1;i <= n;i++){
			if(mx < cnt[i]){
				mx = cnt[i],p1 = i;
			}
		}
		mx = 0;
		cnt[p1] = 0;
		for(int i = 1;i <= n;i++){
			if(mx < cnt[i]){
				mx = cnt[i],p2 = i;
			}
		}
		bool isFind = false;
		int x = p1;
		vis[p1] = vis[0] = true;
		dis[p1] = 0;
		while(!isFind){
			for(int i = 1;i <= n;i++){//迪杰斯特拉 每次算一行
				if(dis[i] > dis[x] + mp[x][i] && !vis[i] && mp[x][i] != 0){
					path[i] = x;
					dis[i] = dis[x] + mp[x][i];
				}
			}
			int max = 9999;
			x = -1;
			for(int i = 1;i <= n;i++){//查找最小的点
				if(dis[i]  < max && !vis[i]){
					max = dis[i],x = i;
				}
			}
			if(x == -1)//找不到说明所有的点都获得永久标号
				isFind = true;
			else 
				vis[x] = 1;//设置永久标号
		}
		printf("%d\n",dis[p2]);
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值